• Matter and Radiation at Extremes
  • Vol. 8, Issue 4, 045901 (2023)
Zhao Wang1、2, Rui Cheng1、2、3、a), Guodong Wang1、2, Xuejian Jin1、2, Yong Tang1, Yanhong Chen1, Zexian Zhou1、4, Lulin Shi1、4, Yuyu Wang1、2、3, Yu Lei1, Xiaoxia Wu1, and Jie Yang1、2、3
Author Affiliations
  • 1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516003, China
  • 4College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
  • show less
    DOI: 10.1063/5.0144921 Cite this Article
    Zhao Wang, Rui Cheng, Guodong Wang, Xuejian Jin, Yong Tang, Yanhong Chen, Zexian Zhou, Lulin Shi, Yuyu Wang, Yu Lei, Xiaoxia Wu, Jie Yang. Observation of plasma dynamics in a theta pinch by a novel method[J]. Matter and Radiation at Extremes, 2023, 8(4): 045901 Copy Citation Text show less
    References

    [1] A. H.Boozer. Physics of magnetically confined plasmas. Rev. Mod. Phys., 76, 1071(2004).

    [2] A.Hasegawa, A.Hasegawa, H.Daido, M.Fujitaet?al., H.Daido, A.Hasegawa, H.Daido, M.Fujitaet?al., M.Fujitaet?al.. Magnetically insulated inertial fusion: A new approach to controlled thermonuclear fusion. Phys. Rev. Lett., 56, 139(1986).

    [3] J.Ongena, J.Ongena, R.Koch, R.Wolf, H.Zohm and, R.Koch, J.Ongena, R.Koch, R.Wolf, H.Zohm and, R.Wolf, J.Ongena, R.Koch, R.Wolf, H.Zohm and, H.Zohm. Magnetic-confinement fusion. Nat. Phys., 12, 398-410(2016).

    [4] I. R.Lindemuth, R.Lindemuth I., R. C.Kirkpatrick. Parameter space for magnetized fuel targets in inertial confinement fusion. Nucl. Fusion, 23, 263-284(1983).

    [5] J. D.Sadler, D.Sadler J., H.Li, K. and, H.Li, D.Sadler J., H.Li, K. and, K. A.Flippo. Parameter space for magnetization effects in high-energy-density plasmas. Matter Radiat. Extremes, 6, 065902(2021).

    [6] F.García-Rubio, F.García-Rubio, A.Ruocco, J.Sanz and, A.Ruocco, F.García-Rubio, A.Ruocco, J.Sanz and, J.Sanz. Plasma expansion into a vacuum with an arbitrarily oriented external magnetic field. Phys. Plasmas, 23, 012103(2016).

    [7] I. R.Lindemuth. Magnetohydrodynamic behavior of thermonuclear fuel in a preconditioned electron beam imploded target. Phys. Fluids, 24, 746(1981).

    [8] S.Molokov, S.Molokov, and R.Moreau, R.Moreau, S.Molokov, and R.Moreau, K.Moffatt. Magnetohydrodynamics(2007).

    [9] J. D.Moody, D.Moody J., B.Pollock B., H.Sioet?al., B. B.Pollock, D.Moody J., B.Pollock B., H.Sioet?al., H.Sioet?al.. Increased ion temperature and neutron yield observed in magnetized indirectly driven D2-filled capsule implosions on the national ignition facility. Phys. Rev. Lett., 129, 195002(2022).

    [10] S. A.Slutz, A.Slutz S., R. A.Vesey. High-gain magnetized inertial fusion. Phys. Rev. Lett., 108, 025003(2012).

    [11] G. A.Wurden, A.Wurden G., C.Hsu S., P.Intratoret al. T., S. C.Hsu, A.Wurden G., C.Hsu S., P.Intratoret al. T., T. P.Intratoret?al.. Magneto-inertial fusion. J. Fusion Energy, 35, 69-77(2015).

    [12] L. J.Perkins, J.Perkins L., D. D., G.Loganet al. B., D. D. M.Ho, J.Perkins L., D. D., G.Loganet al. B., B. G.Loganet?al.. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion. Phys. Plasmas, 24, 062708(2017).

    [13] M. R.Gomez, R.Gomez M., A.Slutz S., B.Sefkowet al. A., S. A.Slutz, R.Gomez M., A.Slutz S., B.Sefkowet al. A., A. B.Sefkowet?al.. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion. Phys. Rev. Lett., 113, 155003(2014).

    [14] C.Arran, C.Arran, P.Ridgers C., N. and, C. P.Ridgers, C.Arran, P.Ridgers C., N. and, N. C.Woolsey. Proton radiography in background magnetic fields. Matter Radiat. Extremes, 6, 046904(2021).

    [15] R. D.Jones, D.Jones R., W. C.Mead. The physics of burn in magnetized deuterium-tritium plasmas: Spherical geometry. Nucl. Fusion, 26, 127-137(1986).

    [16] J. D.Sadler, D.Sadler J., S.Green, S.Liet?al., S.Green, D.Sadler J., S.Green, S.Liet?al., S.Liet?al.. Faster ablative Kelvin–Helmholtz instability growth in a magnetic field. Phys. Plasmas, 29, 052708(2022).

    [17] M. E.Cuneo, E.Cuneo M., C.Herrmann M., B.Sinarset al. D., M. C.Herrmann, E.Cuneo M., C.Herrmann M., B.Sinarset al. D., D. B.Sinarset?al.. Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories. IEEE Trans. Plasma Sci., 40, 3222-3245(2012).

    [18] P. C.Campbell, C.Campbell P., M.Jones T., M.Woolstrumet al. J., T. M.Jones, C.Campbell P., M.Jones T., M.Woolstrumet al. J., J. M.Woolstrumet?al.. Stabilization of liner implosions via a dynamic screw pinch. Phys. Rev. Lett., 125, 035001(2020).

    [19] M.Hohenberger, M.Hohenberger, Y.Chang P., G.Fikselet?al., P. Y.Chang, M.Hohenberger, Y.Chang P., G.Fikselet?al., G.Fikselet?al.. Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser. Phys. Plasmas, 19, 056306(2012).

    [20] W. B.Thompson. Physics of Hot Plasmas(1968).

    [21] R. C.Davidson, C.Davidson R., N. A.Krall. Anomalous transport in high-temperature plasmas with applications to solenoidal fusion systems. Nucl. Fusion, 17, 1313(1977).

    [22] N. L.Bretz, L.Bretz N., A. W.DeSilva. Turbulence spectrum observed in a collision-free theta-pinch plasma by CO2 laser scattering. Phys. Rev. Lett., 32, 138-141(1974).

    [23] A. W.DeSilva, W.DeSilva A., J. A.Stamper. Observation of anomalous electron heating in plasma shock waves. Phys. Rev. Lett., 19, 1027-1030(1967).

    [24] K. F.McKenna, F.McKenna K., R.Kristal, K. and, R.Kristal, F.McKenna K., R.Kristal, K. and, K. S.Thomas. Measurements of plasma density distribution and current-sheath in the implosion phase of a theta-pinch discharge. Phys. Rev. Lett., 32, 409-412(1974).

    [25] V.Josephson, V.Josephson, H.Dazey M., R. and, M. H.Dazey, V.Josephson, H.Dazey M., R. and, R. F.Wuerker. Instability mechanisms in transverse pinches. Phys. Rev. Lett., 5, 416(1961).

    [26] V.Josephson, V.Josephson, H.Dazey M., R. and, M. H.Dazey, V.Josephson, H.Dazey M., R. and, R. F.Wuerker. A neutron-producing mechanism in transverse pinches. Phys. Rev., 121, 674(1961).

    [27] M. E.Kayama, E.Kayama M., A.Clemente R., Y.Honda R., M. and, R. A.Clemente, E.Kayama M., A.Clemente R., Y.Honda R., M. and, R. Y.Honda, E.Kayama M., A.Clemente R., Y.Honda R., M. and, M. S.Dobrowolsky. Radial plasma dynamic in sequential pinches. IEEE Trans. Plasma Sci., 37, 2186-2190(2009).

    [28] P.Christ, P.Christ, Guzmán Y.Bonilla, C.Cistakovet?al., Y.Bonilla Guzmán, P.Christ, Guzmán Y.Bonilla, C.Cistakovet?al., C.Cistakovet?al.. Time-resolved measurement of the free electron and neutral gas line density in a hydrogen theta-pinch plasma target by two-color interferometry. J. Phys. D: Appl. Phys., 55, 185204(2022).

    [29] A. A.Newton. Area waves in a theta pinch. Nucl. Fusion, 8, 93-97(1968).

    [30] K. F.McKenna, F.McKenna K., T. M.York. End loss from a collision dominated theta pinch plasma. Phys. Fluids, 20, 1556(1977).

    [31] T. M.York, M.York T., A.Jacoby B., P.Mikellides and, B. A.Jacoby, M.York T., A.Jacoby B., P.Mikellides and, P.Mikellides. Plasma flow processes within magnetic nozzle configurations. J. Propul. Power, 8, 1023-1030(1992).

    [32] J. E.Heidrich, E.Heidrich J., M.York T., W.Robinson J., E. and, T. M.York, E.Heidrich J., M.York T., W.Robinson J., E. and, J. W.Robinson, E.Heidrich J., M.York T., W.Robinson J., E. and, E. H.Klevans. Transient loss from a theta pinch with an initial trapped reverse magnetic field. Plasma Phys., 24, 1243(1982).

    [33] C.Grabowski, C.Grabowski, H.Degnan J., J.Amdahlet al. D., J. H.Degnan, C.Grabowski, H.Degnan J., J.Amdahlet al. D., D. J.Amdahlet?al.. Addressing short trapped-flux lifetime in high-density field-reversed configuration plasmas in FRCHX. IEEE Trans. Plasma Sci., 42, 1179-1188(2014).

    [34] M. J. E.Manuel, J. M., B.Khiar, G.Rigonet?al., B.Khiar, J. M., B.Khiar, G.Rigonet?al., G.Rigonet?al.. On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas. Matter Radiat. Extremes, 6, 026904(2021).

    [35] M.Rosenbluth. Infinite conductivity theory of the pinch. Los Alamos Scientific Laboratory Report LA-1850(1954).

    [36] E. K.Stover, K.Stover E., H.Klevans E., T. and, E. H.Klevans, K.Stover E., H.Klevans E., T. and, T. M.York. Computer modeling of linear theta pinch machines. Phys. Fluids, 21, 2090(1978).

    [37] S.Lee, S.Lee, H.Saw S., C. P., S. H.Saw, S.Lee, H.Saw S., C. P., P. C. K.Leeet?al.. A model code for the radiative theta pinch. Phys. Plasmas, 21, 072501(2014).

    [38] S.Chaisombat, S.Chaisombat, D.Ngamrungroj, P.Tangjitsomboon, R.Mongkolnavin and, D.Ngamrungroj, S.Chaisombat, D.Ngamrungroj, P.Tangjitsomboon, R.Mongkolnavin and, P.Tangjitsomboon, S.Chaisombat, D.Ngamrungroj, P.Tangjitsomboon, R.Mongkolnavin and, R.Mongkolnavin. Determination of plasma electron temperature in a pulsed inductively coupled plasma (PICP) device. Procedia Eng., 32, 929-935(2012).

    [39] J. B.Taylor, B.Taylor J., J. A.Wesson. End losses from a theta pinch. Nucl. Fusion, 5, 159(1965).

    [40] J. P.Freidberg, P.Freidberg J., H.Weitzner. Endloss from a linear theta pinch. Nucl. Fusion, 15, 217(1975).

    [41] G.Loisch, G.Loisch, G.Xu, A.Blazevic, B.Cihodariu-Ionita, J.Jacoby and, G.Xu, G.Loisch, G.Xu, A.Blazevic, B.Cihodariu-Ionita, J.Jacoby and, A.Blazevic, G.Loisch, G.Xu, A.Blazevic, B.Cihodariu-Ionita, J.Jacoby and, B.Cihodariu-Ionita, G.Loisch, G.Xu, A.Blazevic, B.Cihodariu-Ionita, J.Jacoby and, J.Jacoby. Hydrogen plasma dynamics in the spherical theta pinch plasma target for heavy ion stripping. Phys. Plasmas, 22, 053502(2015).

    [42] C.Teske, C.Teske, Y.Liu, S.Blaes, J.Jacoby and, Y.Liu, C.Teske, Y.Liu, S.Blaes, J.Jacoby and, S.Blaes, C.Teske, Y.Liu, S.Blaes, J.Jacoby and, J.Jacoby. Electron density and plasma dynamics of a spherical theta pinch. Phys. Plasmas, 19, 033505(2012).

    [43] W. W.Yarborough, W.Yarborough W., J. P.Barach. Current sheet observations in a small theta pinch. Phys. Fluids, 18, 105(1975).

    [44] K.Cistakov, K.Cistakov, P.Christ, L.Manganelli, P.Christ, K.Cistakov, P.Christ, L.Manganelli, L.Manganelli et al. Study on a dense theta pinch plasma for ion beam stripping application for FAIR. Recent Contrib. Phys, 75, 14-21(2020).

    [45] M.Sato. Particle acceleration and breakdown conditions in an alternating magnetic field. Nuovo Cimento, 23, 22-46(1962).

    [46] H. R.Griem. Principles of Plasma Spectroscopy(1997).

    [47] H.-J.Kunze. Introduction to Plasma Spectroscopy(2009).

    [48] J. M.Garland, M.Garland J., G.Tauscher, S.Bohlenet?al., G.Tauscher, M.Garland J., G.Tauscher, S.Bohlenet?al., S.Bohlenet?al.. Combining laser interferometry and plasma spectroscopy for spatially resolved high-sensitivity plasma density measurements in discharge capillaries. Rev. Sci. Instrum., 92, 013505(2021).

    [49] M. A.Gigosos, A.Gigosos M., Á.González M., V.Cardeñoso and, M. á.González, A.Gigosos M., Á.González M., V.Cardeñoso and, V.Carde?oso. Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim. Acta, Part B, 58, 1489-1504(2003).

    [50] N.Konjevi?, N.Konjevi?, M.Ivkovi?, N.Sakan and, M.Ivkovi?, N.Konjevi?, M.Ivkovi?, N.Sakan and, N.Sakan. Hydrogen Balmer lines for low electron number density plasma diagnostics. Spectrochim. Acta, Part B, 76, 16-26(2012).

    [51] C. G.Parigger, G.Parigger C., A.Drake K., M.Helstern C., G.Gautam and, K. A.Drake, G.Parigger C., A.Drake K., M.Helstern C., G.Gautam and, C. M.Helstern, G.Parigger C., A.Drake K., M.Helstern C., G.Gautam and, G.Gautam. Laboratory hydrogen-beta emission spectroscopy for analysis of astrophysical white dwarf spectra. Atoms, 6, 36(2018).

    [52] P.Christ, P.Christ, K.Cistakov, M.Iberleret?al., K.Cistakov, P.Christ, K.Cistakov, M.Iberleret?al., M.Iberleret?al.. Measurement of the free electron line density in a spherical theta-pinch plasma target by single wavelength interferometry. J. Phys. D: Appl. Phys., 54, 285203(2021).

    [53] H. R.Griem. Plasma Spectroscopy(1964).

    [54] C. G.Parigger, G.Parigger C., M.Helstern C., A.Drake K., G.Gautam and, C. M.Helstern, G.Parigger C., M.Helstern C., A.Drake K., G.Gautam and, K. A.Drake, G.Parigger C., M.Helstern C., A.Drake K., G.Gautam and, G.Gautam. Balmer-series hydrogen-beta line dip-shifts for electron density measurements. Int. Rev. At. Mol. Phys, 8, 73-79(2017).

    [55] G. H.Cavalcanti, H.Cavalcanti G., E. E.Farias. Analysis of the energetic parameters of a theta pinch. Rev. Sci. Instrum., 80, 125109(2009).

    [56] C.Teske, C.Teske, J.Jacoby, F.Senzel, W.Schweizer and, J.Jacoby, C.Teske, J.Jacoby, F.Senzel, W.Schweizer and, F.Senzel, C.Teske, J.Jacoby, F.Senzel, W.Schweizer and, W.Schweizer. Energy transfer efficiency of a spherical theta pinch. Phys. Plasmas, 17, 043501(2010).

    [57] F. A.Ebrahim, A.Ebrahim F., H.Gaber W., M. and, W. H.Gaber, A.Ebrahim F., H.Gaber W., M. and, M. E.Abdel-kader. Estimation of the current sheath dynamics and magnetic field for theta pinch by snow plow model simulation. J. Fusion Energy, 38, 539-547(2019).

    [58] L. H.Lim, H.Lim L., S.Ling Y., H.Sawet S., Y. S.Ling, H.Lim L., S.Ling Y., H.Sawet S., S. H.Saw et al. Amending the reflected shock phase of the Lee code. AIP Conf. Proc, 1824, 030010(2017).

    [59] T. J. M.Boyd, J. T., J. J.Sanderson. The Physics of Plasmas(2004).

    [60] Y.Mizuguchi, Y.Mizuguchi, J.-I.Sakai, R.Yousefi H., T.Haruki, K.Masugata and, J.-I.Sakai, Y.Mizuguchi, J.-I.Sakai, R.Yousefi H., T.Haruki, K.Masugata and, H. R.Yousefi, Y.Mizuguchi, J.-I.Sakai, R.Yousefi H., T.Haruki, K.Masugata and, T.Haruki, Y.Mizuguchi, J.-I.Sakai, R.Yousefi H., T.Haruki, K.Masugata and, K.Masugata. Simulation of high-energy proton production by fast magnetosonic shock waves in pinched plasma discharges. Phys. Plasmas, 14, 032704(2007).

    [61] S. H.Gold, H.Gold S., A. W.DeSilva. Observation of an lon-beam-driven instability in a magnetized plasma. Phys. Rev. Lett., 42, 1750-1753(1979).

    [62] K.Papadopoulos. A review of anomalous resistivity for the ionosphere. Rev. Geophys., 15, 113-127(1977).

    [63] D. B.Graham, B.Graham D., V.Khotyaintsev Y., M.Andreet?al., Y. V.Khotyaintsev, B.Graham D., V.Khotyaintsev Y., M.Andreet?al., M.Andreet?al.. Direct observations of anomalous resistivity and diffusion in collisionless plasma. Nat. Commun., 13, 2954(2022).

    [64] R. C.Davidson, C.Davidson R., N. T.Gladd. Anomalous transport properties associated with the lower-hybrid-drift instability. Phys. Fluids, 18, 1327(1975).

    [65] K.Tummel, K.Tummel, L.Ellison C., A.Farmeret al. W., C. L.Ellison, K.Tummel, L.Ellison C., A.Farmeret al. W., W. A.Farmeret?al.. Kinetic simulations of anomalous resistivity in high-temperature current carrying plasmas. Phys. Plasmas, 27, 092306(2020).

    Zhao Wang, Rui Cheng, Guodong Wang, Xuejian Jin, Yong Tang, Yanhong Chen, Zexian Zhou, Lulin Shi, Yuyu Wang, Yu Lei, Xiaoxia Wu, Jie Yang. Observation of plasma dynamics in a theta pinch by a novel method[J]. Matter and Radiation at Extremes, 2023, 8(4): 045901
    Download Citation