• Acta Optica Sinica
  • Vol. 41, Issue 11, 1122002 (2021)
Congjing Wang1、2, Dong Wang1、2, Xin Huang1、2, and Jing Wang1、*
Author Affiliations
  • 1Key Laboratory of Space-Based Dynamic & Rapid Optical Imaging Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China;
  • 2School of Material Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS202141.1122002 Cite this Article Set citation alerts
    Congjing Wang, Dong Wang, Xin Huang, Jing Wang. Optimization and Finite Element Analysis of Large-Aperture SiC Lightweight Primary Mirror[J]. Acta Optica Sinica, 2021, 41(11): 1122002 Copy Citation Text show less
    References

    [1] Xie J, He F Y, Wang J et al. Simulation and optimization of axial supporting structures for theodolite primary mirror[J]. Infrared and Laser Engineering, 45, S118001(2016).

    [2] San X G, Sun N, Zhuo R S et al. Design of supporting structure for primary mirror of large aperture theodolite[J]. Optics and Precision Engineering, 21, 3111-3117(2013).

    [3] Liu S, Hu R, Li Q et al. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope[J]. Applied Optics, 53, 8318-8325(2014).

    [4] Tan Y F. Research on ground-based large-aperture telescope mount and thermal control for primary mirror[D]. Beijing: University of Chinese Academy of Sciences, 67-88(2018).

    [5] Zhang J X. Overview of structure technologies of large aperture ground-based telescopes[J]. Chinese Optics, 5, 327-336(2012).

    [6] Yang J W, Huang Q L. Optimized design of structure parameters for large-aperture mirrors[J]. Chinese Space Science and Technology, 31, 77-83(2011).

    [7] Wang Z S. Research on structure optimization of large aperture monolithic space-based mirror and its mounting technology[D]. Beijing: University of Chinese Academy of Sciences, 45-53(2019).

    [8] Fan L. Research on the lightweight design and support of the 2 m-SiC primary mirror for ground-based telescope[D]. Beijing: University of Chinese Academy of Sciences, 65-76(2013).

    [9] Xie J. Research on structural design and weight reduction of theodolite based on contact and vibration simulation[D]. Beijing: University of Chinese Academy of Sciences, 29-104(2017).

    [10] Su Y Q. Research on TMT tertiary mirror system Rotator assembly structure technique[D]. Beijing: University of Chinese Academy of Sciences, 65-78(2014).

    [11] Wang F G, Yang H B, Zhao W X et al. Lightweight design and analysis of a 1.2 m SiC primary mirror[J]. Optics and Precision Engineering, 17, 85-91(2009).

    [12] Dai X L, Xian H, Tang J L et al. Designing of lateral support system for an 8 m active thin mirror[J]. Acta Optica Sinica, 35, 0622004(2015).

    [13] Li H Z, Zhang Z D, Wang J L et al. Active surface-profile correction of 620 mm thin-mirror based on flotation support[J]. Acta Optica Sinica, 33, 0511001(2013).

    [14] Shao L, Wu X X, Chen B G et al. Passive support system of light-weighted SiC primary mirror[J]. Optics and Precision Engineering, 23, 1380-1386(2015).

    [15] Sun Q, Gong X F. Design of large-aperture primary mirror based on hybrid optimization method[J]. Acta Optica Sinica, 40, 2212001(2020).

    [16] Zhao T J, Qiao Y F, Sun N et al. Surface deformation of theodolite primary mirror under the support system[J]. Chinese Optics, 10, 477-483(2017).

    [17] Shi Y P, Zhou Y R[M]. Detailed ABAQUS finite element analysis examples, 125-163(2006).

    [18] Yang L B, Li Y H, Wang J et al. Alignment of Φ1000 mm primary mirror for photoelectric tracking system[J]. Optics and Precision Engineering, 26, 1633-1641(2018).

    Congjing Wang, Dong Wang, Xin Huang, Jing Wang. Optimization and Finite Element Analysis of Large-Aperture SiC Lightweight Primary Mirror[J]. Acta Optica Sinica, 2021, 41(11): 1122002
    Download Citation