• Advanced Photonics
  • Vol. 6, Issue 2, 026004 (2024)
Shiqi Xu1, Xi Yang1, Paul Ritter2, Xiang Dai1、3, Kyung Chul Lee1、4, Lucas Kreiss1、2, Kevin C. Zhou1、5, Kanghyun Kim1, Amey Chaware1, Jadee Neff6, Carolyn Glass6, Seung Ah Lee4, Oliver Friedrich2, and Roarke Horstmeyer1、*
Author Affiliations
  • 1Duke University, Durham, North Carolina, United States
  • 2Friedrich-Alexander University, Erlangen, Germany
  • 3UC San Diego, La Jolla, California, United States
  • 4Yonsei University, Seoul, Republic of Korea
  • 5UC Berkeley, Berkeley, California, United States
  • 6Duke University Medical Center, Durham, North Carolina, United States
  • show less
    DOI: 10.1117/1.AP.6.2.026004 Cite this Article Set citation alerts
    Shiqi Xu, Xi Yang, Paul Ritter, Xiang Dai, Kyung Chul Lee, Lucas Kreiss, Kevin C. Zhou, Kanghyun Kim, Amey Chaware, Jadee Neff, Carolyn Glass, Seung Ah Lee, Oliver Friedrich, Roarke Horstmeyer. Tensorial tomographic Fourier ptychography with applications to muscle tissue imaging[J]. Advanced Photonics, 2024, 6(2): 026004 Copy Citation Text show less
    References

    [1] Y. Park, C. Depeursinge, G. Popescu. Quantitative phase imaging in biomedicine. Nat. Photonics, 12, 578-589(2018).

    [2] T. Ling et al. High-speed interferometric imaging reveals dynamics of neuronal deformation during the action potential. Proc. Natl. Acad. Sci., 117, 10278-10285(2020).

    [3] Z. El-Schich, A. Leida Mölder, A. Gjörloff Wingren. Quantitative phase imaging for label-free analysis of cancer cells—focus on digital holographic microscopy. Appl. Sci., 8, 1027(2018).

    [4] K. Zhanghao et al. High-dimensional super-resolution imaging reveals heterogeneity and dynamics of subcellular lipid membranes. Nat. Commun., 11, 1-10(2020).

    [5] J. Lu et al. Single-molecule 3D orientation imaging reveals nanoscale compositional heterogeneity in lipid membranes. Angew. Chem. Int. Ed., 59, 17572-17579(2020).

    [6] W. J. Schmidt. Die Bausteine des Tierkörpers in polarisiertem Lichte(1924).

    [7] S. Inoue. Polarization optical studies of the mitotic spindle. Chromosoma, 5, 487-500(1953).

    [8] G. Nomarski. Differential microinterferometer with polarized waves. J. Phys. Radium Paris, 16, 9S(1955).

    [9] R. Oldenbourg. Polarized light microscopy: principles and practice. Cold Spring Harbor Protoc., 2013, pdb-top078600(2013).

    [10] S. B. Mehta, M. Shribak, R. Oldenbourg. Polarized light imaging of birefringence and diattenuation at high resolution and high sensitivity. J. Opt., 15, 094007(2013).

    [11] E. M. Spiesz, W. Kaminsky, P. K. Zysset. A quantitative collagen fibers orientation assessment using birefringence measurements: calibration and application to human osteons. J. Struct. Biol., 176, 302-306(2011).

    [12] M. Tadayon et al. The mantis shrimp saddle: a biological spring combining stiffness and flexibility. Adv. Funct. Mater., 25, 6437-6447(2015).

    [13] A. Le Gratiet et al. Zebrafish structural development in Mueller-matrix scanning microscopy. Sci. Rep., 9, 19974(2019).

    [14] L. C. U. Junqueira, G. Bignolas, R. R. Brentani. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J., 11, 447-455(1979).

    [15] H. V. Desai et al. Cardiac amyloidosis: approaches to diagnosis and management. Cardiol. Rev., 18, 1-11(2010).

    [16] C. W. Pirnstill, G. L. Coté. Malaria diagnosis using a mobile phone polarized microscope. Sci. Rep., 5, 13368(2015).

    [17] T. Liu et al. Distinguishing structural features between Crohn’s disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters. J. Biophotonics, 12, e201900151(2019).

    [18] Y. Jiao et al. Real-time Jones phase microscopy for studying transparent and birefringent specimens. Opt. Express, 28, 34190-34200(2020).

    [19] S. Shin et al. Reference-free polarization-sensitive quantitative phase imaging using single-point optical phase conjugation. Opt. Express, 26, 26858-26865(2018).

    [20] B. Ge et al. Single-shot quantitative polarization imaging of complex birefringent structure dynamics. ACS Photonics, 8, 3440-3447(2021).

    [21] T. Liu et al. Deep learning-based holographic polarization microscopy. ACS Photonics, 7, 3023-3034(2020).

    [22] J. Van Rooij, J. Kalkman. Polarization contrast optical diffraction tomography. Biomed. Opt. Express, 11, 2109-2121(2020).

    [23] A. Saba et al. Polarization-sensitive optical diffraction tomography. Optica, 8, 402-408(2021).

    [24] S. Shin et al. Tomographic measurement of dielectric tensors at optical frequency. Nat. Mater., 21, 317-324(2022).

    [25] A. M. Taddese et al. Jones tomographic diffractive microscopy with a polarized array sensor. Opt. Express, 31, 9034-9051(2023).

    [26] Q. Song et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nat. Commun., 11, 2651(2020).

    [27] S. Song et al. Large-area, high-resolution birefringence imaging with polarization-sensitive Fourier ptychographic microscopy. ACS Photonics, 8, 158-165(2021).

    [28] S. Hur et al. Polarization-sensitive differential phase-contrast microscopy. Opt. Lett., 46, 392-395(2021).

    [29] S.-M. Guo et al. Revealing architectural order with quantitative label-free imaging and deep learning. Elife, 9, e55502(2020).

    [30] A. Baroni et al. Joint estimation of object and probes in vectorial ptychography. Opt. Express, 27, 8143-8152(2019).

    [31] X. Dai et al. Quantitative Jones matrix imaging using vectorial Fourier ptychography. Biomed. Opt. Express, 13, 1457-1470(2022).

    [32] L. Yang et al. Lensless polarimetric coded ptychography (POL-CP) for high-resolution, high-throughput birefringence imaging on a chip(2023).

    [33] L.-H. Yeh et al. uPTI: uniaxial permittivity tensor imaging of intrinsic density and anisotropy(2020).

    [34] S. Xu et al. Tensorial tomographic differential phase-contrast microscopy, 1-11(2022).

    [35] M. Both et al. Second harmonic imaging of intrinsic signals in muscle fibers in situ. J. Biomed. Opt., 9, 882-892(2004).

    [36] K. Seo et al. Symmetry breaking of HPSCS in micropattern generates a polarized spinal cord-like organoid (PSCO) with dorsoventral organization(2021).

    [37] S. Song et al. Polarization sensitive intensity diffraction tomography. Light Sci. Appl., 12, 124(2023).

    [38] J. Li et al. High-speed in vitro intensity diffraction tomography. Adv. Photonics, 1, 066004(2019).

    [39] R. Horstmeyer et al. Diffraction tomography with Fourier ptychography. Optica, 3, 827-835(2016).

    [40] T.-A. Pham et al. Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering. Opt. Express, 26, 2749-2763(2018).

    [41] M. A. Lodhi et al. Inverse multiple scattering with phaseless measurements, 1519-1523(2020).

    [42] K. C. Zhou, R. Horstmeyer. Diffraction tomography with a deep image prior. Opt. Express, 28, 12872-12896(2020).

    [43] S. Zhou et al. Transport-of-intensity Fourier ptychographic diffraction tomography: defying the matched illumination condition. Optica, 9, 1362-1373(2022).

    [44] L. Tian, L. Waller. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica, 2, 104-111(2015).

    [45] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(2013).

    [46] A. D. Yaghjian. A Direct Approach to the Derivation of Electric Dyadic Green’s Functions(1978).

    [47] P. Ferrand, M. Allain, V. Chamard. Ptychography in anisotropic media. Opt. Lett., 40, 5144-5147(2015).

    [48] H. Weyl. A new extension of the theory of relativity. Ann. Physik, 364, 101-133(1919).

    [49] R. A. Chipman, W. S. T. Lam, G. Young. Polarized Light and Optical Systems(2018).

    [50] R. C. Jones. A new calculus for the treatment of optical systems. I. Description and discussion of the calculus. J. Opt. Soc. Am., 31, 488-493(1941).

    [51] R. Ling et al. High-throughput intensity diffraction tomography with a computational microscope. Biomed. Opt. Express, 9, 2130-2141(2018).

    [52] P. C. Konda et al. Fourier ptychography: current applications and future promises. Opt. Express, 28, 9603-9630(2020).

    [53] M. Chen, L. Tian, L. Waller. 3D differential phase contrast microscopy. Biomed. Opt. Express, 7, 3940-3950(2016).

    [54] A. B. Ayoub et al. 3D reconstruction of weakly scattering objects from 2D intensity-only measurements using the Wolf transform. Opt. Express, 29, 3976-3984(2021).

    [55] N. Streibl. Three-dimensional imaging by a microscope. J. Opt. Soc. Am. A, 2, 121-127(1985).

    [56] A. Paszke et al. PyTorch: an imperative style, high-performance deep learning library(2019).

    [57] Y. E. Nesterov. A method of solving a convex programming problem with convergence rate O(k1/2). Doklady Akademii Nauk, 269, 543-547(1983).

    [58] B. Bai et al. Pathological crystal imaging with single-shot computational polarized light microscopy. J. Biophotonics, 13, e201960036(2020).

    [59] R. Oldenbourg. Analysis of edge birefringence. Biophys. J., 60, 629-641(1991).

    [60] Y. Shi, A. D. Mucsi, G. Ng. Monosodium urate crystals in inflammation and immunity. Immunol. Rev., 233, 203-217(2010).

    [61] T. P. Quock et al. Epidemiology of al amyloidosis: a real-world study using US claims data. Blood Adv., 2, 1046-1053(2018).

    [62] D. Schneidereit et al. An advanced optical clearing protocol allows label-free detection of tissue necrosis via multiphoton microscopy in injured whole muscle. Theranostics, 11, 2876-2891(2021).

    [63] M. B. Reiser, M. H. Dickinson. A modular display system for insect behavioral neuroscience. J. Neurosci. Methods, 167, 127-139(2008).

    [64] T. Aidukas et al. Phase and amplitude imaging with quantum correlations through Fourier ptychography. Sci. Rep., 9, 10445(2019).

    [65] X. Yang et al. Quantized Fourier ptychography with binary images from SPAD cameras. Photonics Res., 9, 1958-1969(2021).

    [66] Y. Sun et al. Regularized Fourier ptychography using an online plug-and-play algorithm, 7665-7669(2019).

    [67] V. Bianco et al. Deep learning-based, misalignment resilient, real-time Fourier ptychographic microscopy reconstruction of biological tissue slides. IEEE J. Sel. Top. Quantum Electron., 28, 6800110(2022).

    [68] I. Kang et al. Attentional ptycho-tomography (APT) for three-dimensional nanoscale x-ray imaging with minimal data acquisition and computation time. Light Sci. Appl., 12, 131(2023).

    [69] B. Yang et al. Polarized light microscopy for 3-dimensional mapping of collagen fiber architecture in ocular tissues. J. Biophotonics, 11, e201700356(2018).

    Shiqi Xu, Xi Yang, Paul Ritter, Xiang Dai, Kyung Chul Lee, Lucas Kreiss, Kevin C. Zhou, Kanghyun Kim, Amey Chaware, Jadee Neff, Carolyn Glass, Seung Ah Lee, Oliver Friedrich, Roarke Horstmeyer. Tensorial tomographic Fourier ptychography with applications to muscle tissue imaging[J]. Advanced Photonics, 2024, 6(2): 026004
    Download Citation