• Acta Photonica Sinica
  • Vol. 51, Issue 7, 0751409 (2022)
Qiang LIU1、2、*, Zaiyuan WANG1、2, Jiehao WANG1、2, and Yuhang LI1、2
Author Affiliations
  • 1Department of Precision Instrument,Tsinghua University,Beijing 100084,China
  • 2Key Laboratory of Photonic Control Technology(Tsinghua University),Ministry of Education,Beijing 100084,China
  • show less
    DOI: 10.3788/gzxb20225107.0751409 Cite this Article
    Qiang LIU, Zaiyuan WANG, Jiehao WANG, Yuhang LI. Research Progress on Low-noise Laser for Space-based Gravitational Wave Detector(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751409 Copy Citation Text show less
    References

    [1] A EINSTEIN. The foundation of the general theory of relativity. Annalen der Physik, 49, 769-822(1916).

    [2] J WEBER. Anisotropy and polarization in the gravitational-radiation experiments. Physical Review Letters, 25, 180-184(1970).

    [3] B C BARISH. The laser interferometer gravitational-wave observatory LIGO. Advances in Space Research, 25, 1165-1169(2000).

    [4] B P ABBOTT, R ABBOTT, T D ABBOTT et al. Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116, 61102(2016).

    [5] B P ABBOTT, R ABBOTT, T D ABBOTT et al. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Physical Review X, 9, 31040(2019).

    [6] Yunyong WANG, Xingjiang ZHU, Jian LIU et al. The laser interferometer gravitational wave detector. Progress in Astronomy, 32, 348-382(2014).

    [7] Ziren LUO, Shan BAI, Xing BIAN et al. Gravitational wave detection by space laser interferometry. Advances in Mechanics, 43, 415-447(2013).

    [8] K DANZMANN, L S TEAM. LISA-an ESA cornerstone mission for a gravitational wave observatory. Classical and Quantum Gravity, 14, 1399-1404(1997).

    [9] Yunyong WANG. Gravitational wave detection(2020).

    [10] S KAWAMURA, M ANDO, N SETO et al. The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 28, 94011(2011).

    [11] Jun LUO, Linghao AI, Yanli AI et al. A brief introduction to the TianQin project. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60, 1-19(2021).

    [12] Ziren LUO, ZongKuan GUO, Gang JIN et al. A brief analysis to Taiji: Science and technology. Results in Physics, 16, 102918(2020).

    [13] Yungui GONG, Jun LUO, Bin WANG. Concepts and status of Chinese space gravitational wave detection projects. Nature Astronomy, 5, 881-889(2021).

    [14] Min MING, Yingxin LUO, Yurong LIANG et al. Ultraprecision intersatellite laser interferometry. International Journal of Extreme Manufacturing, 2, 53-66(2020).

    [15] Yunyong WANG, Zonghong ZHU. Noise and sensitivity of laser interferometer gravitational wave detectors. Modern Physics, 31, 56-62(2019).

    [16] Huizong DUAN, Yingxin LUO, Jingyi ZHANG et al. Inter-satellite laser interferometry. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60, 162-177(2021).

    [17] Yunyong WANG. Third-generation laser interferometer gravitational wave detector. Modern Physics, 29, 39-51(2017).

    [18] K NUMATA, A W YU, H JIAO et al. Laser system development for the LISA (Laser Interferometer Space Antenna) mission(2019).

    [19] T J KANE, R L BYER. Monolithic, unidirectional single-mode Nd:YAG ring laser. Optics Letters, 10, 65-67(1985).

    [20] E LUVSANDAMDIN, S SPIEßBERGER, M SCHIEMANGK et al. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space. Applied Physics B, 111, 255-260(2013).

    [21] M TRÖBS, S BARKS, J MÖBIUS et al. Lasers for LISA: Overview and phase characteristics. Journal of Physics: Conference Series, 154, 12016(2009).

    [22] M ARMANO, H AUDLEY, J BAIRD et al. Temperature stability in the sub-millihertz band with LISA pathfinder. Monthly Notices of the Royal Astronomical Society, 486, 3368-3379(2019).

    [23] M TRÖBS, L D'ARCIO, G HEINZEL et al. Frequency stabilization and actuator characterization of an ytterbium-doped distributed-feedback fiber laser for LISA. Journal of the Optical Society of America B, 26, 1137-1140(2009).

    [24] K NICKLAUS, M HERDING, X WANG et al. High stability laser for next generation gravity missions(2014).

    [26] Wei SHI, Shijie FU, Quan SHENG et al. Research progress on high-performance single-frequency fiber lasers: 2017-2021 (Invited). Infrared and Laser Engineering, 51, 65-78(2022).

    [27] M TRÖBS, P WESSELS, C FALLNICH. Power- and frequency-noise characteristics of an Yb-doped fiber amplifier and actuators for stabilization. Optics Express, 13, 2224-2235(2005).

    [28] K NUMATA, J R CHEN, J CAMP. Fiber laser development for LISA. Journal of physics, 228, 12043(2010).

    [29] A DAIBER. Narrow-linewidth tunable external cavity laser for coherent communication(2014).

    [30] A D LUDLOW, Yanyi JIANG, N D LEMKE et al. Making optical atomic clocks more stable with 10-16-level laser stabilization. Nature Photonics, 5, 158-161(2011).

    [31] K NUMATA, J CAMP, M A KRAINAK et al. Performance of planar-waveguide external cavity laser for precision measurements. Optics Express, 18, 22781-22788(2010).

    [32] K NUMATA, M ALALUSI, L STOLPNER et al. Characteristics of the single longitudinal-mode planar-waveguide external cavity diode laser at 1 064 nm. Optics Letters, 39, 2101-2104(2014).

    [33] K DAHL, P CEBECIB, O FITZAUB et al. A new laser technology for LISA(2018).

    [35] S KAWAMURA, M ANDO, N SETO et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO. Progress of Theoretical and Experimental Physics, 2021, 05A105(2021).

    [36] M MUSHA, K NAKAGAWA, K UEDA. Developments of a space-borne stabilized laser for DECIGO and DPF(2012).

    [37] A SUEMASA, O A SNIMO, S OHTSUKA et al. Stable and high power 515-nm lasers for the space gravitational wave detector: DECIGO(2018).

    [38] Jun LUO, Yanzheng BAI, Lin CAI et al. The first round result from the TianQin-1 satellite. Classical and Quantum Gravity, 37, 185013(2020).

    [39] Zhu LI, Huizong DUAN, Xiangqing HUANG et al. Design and performance test of the spaceborne laser in the TianQin-1 mission. Optics & Laser Technology, 141, 107155(2021).

    [40] Ziren LUO, Min ZHANG, Gang JIN et al. Introduction of Chinese space-borne gravitational wave detection program Taiji and Taiji-1 satellite mission. Journal of Deep Space Exploration, 7, 3-10(2020).

    [41] Zhiming CAI, Jianfeng DENG. Satellite architecture and preliminary in-orbit experiment of Taiji-1. International Journal of Modern Physics A, 36, 2140020(2021).

    [42] Guangwei SUN, Dijun CHEN, Guofeng XIN et al. High stability laser source for Taiji-1 satellite. International Journal of Modern Physics A, 36, 2140006(2021).

    [43] Zhongmin YANG, Shanhui XU. Single-frequency fiber laser(2018).

    [44] B C BUCHLER, E H HUNTINGTON, C C HARB et al. Feedback control of laser intensity noise. Physical Review A, 57, 1286-1294(1998).

    [45] Qian ZHANG, Yubin HOU, Shuxian Qi et al. Low-noise single-frequency 1.5µm fiber laser with a complex optical-feedback loop. IEEE Photonics Technology Letters, 29, 193-196(2017).

    [46] G DANION, F BONDU, G LOAS et al. GHz bandwidth noise eater hybrid optical amplifier: design guidelines. Optics Letters, 39, 4239-4242(2014).

    [47] B WILLKE, N UEHARA, E K GUSTAFSON et al. Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner. Optics Letters, 23, 1704(1998).

    [48] T J KANE. Intensity noise in diode pumped single frequency Nd YAG lasers and its control by electronic feedback. IEEE Photonic Technology Letters, 2, 244-255(1990).

    [49] G A BALL, A G HULL, C HOLTON et al. Low noise single frequency linear fiber laser. Electronics Letters, 29, 1623-1625(1993).

    [50] Jing ZHANG, Hongliang MA, Changde XIE et al. Suppression of intensity noise of a laser-diode-pumped single-frequency Nd:YVO4 laser by optoelectronic control. Applied Optics, 42, 1068-1074(2003).

    [51] P KWEE, B WILLKE, K DANZMANN. Shot-noise-limited laser power stabilization with a high-power photodiode array. Optics Letters, 34, 2912-2914(2009).

    [52] J JUNKER, P OPPERMANN, B WILLKE et al. Shot-noise-limited laser power stabilization for the AEI 10m Prototype interferometer. Optics Letters, 42, 755-758(2017).

    [53] Le ZHANG. Research on fiber-optic vibration sensor and SHG laser system with high frequency stability based on laser frequency locking technology(2012).

    [54] E I MOSES, C L TANG. High-sensitivity laser wavelength-modulation spectroscopy. Optics Letters, 1, 115-117(1977).

    [55] N UMEDA, M TSUKIJI, H TAKASAKI. Stabilized He3-Ne20 transverse Zeeman laser. Applied Optics, 19(1980).

    [56] G GALZERANO, C SVELTO, F FERRARIO et al. Frequency stabilization of a 1.54µm Er-Yb laser against doppler-free 13C2H2 lines. Optics Communications, 209, 411-416(2002).

    [57] E D BLACK. An introduction to Pound-Drever-Hall laser frequency stabilization. American Journal of Physics, 69, 79-87(2000).

    [58] Zhiqiang LIU, Jianli LIU, Zehui ZHAI. Research and development of laser frequency stabilization technique. Journal of Quantum Optics, 24, 228-236(2018).

    [59] Zhaoyang TAI. Study on the key techniques of the 1.5 µm cavity-stabilized ultra-stable laser, 41-50(2018).

    [60] R W P DREVER, J L HALL, F V KOWALSKI et al. Laser phase and frequency stabilization using an optical resonator. Applied Physics B, 31, 97-105(1983).

    [61] F BONDU, P FRITSCHEL, C N MAN et al. Ultrahigh-spectral-purity laser for the VIRGO experiment. Optics Letters, 21, 582-584(1996).

    [62] M PETERSEIM, O S BROZEK, K DANZMANN et al. Laser development and laser stabilization for the space-borne gravitational wave detector LISA(1998).

    [63] A D LUDLOW, X HUANG, M NOTCUTT et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10-15. Optics Letters, 32, 641-643(2007).

    [64] M TRÖBS, L D'ARCIO, G HEINZEL et al. Frequency stabilization and actuator characterization of an ytterbium-doped distributed-feedback fiber laser for LISA. Journal of the Optical Society of America B, 26, 1137-1140(2009).

    [65] K NICKLAUS, N BELLER, O FITZAU et al. High stability laser for next generation gravity missions, 10563, 105632T(2014).

    [66] K DÖRINGSHOFF, T SCHULDT, E V KOVALCHUK et al. A flight-like absolute optical frequency reference based on iodine for laser systems at 1064 nm. Applied physics B, 123, 181-183(2017).

    [67] Yingxin LUO, Hongyin LI, Yurong LIANG et al. A preliminary prototype of laser frequency stabilization for spaceborne interferometry missions, 1-4(2016).

    [68] Ji ZHANG. Research on the noise measurement and suppression technology of fiber lase(2020).

    [69] A ARIE, S SCHILLER, E K GUSTAFSON et al. Absolute frequency stabilization of diode-laser-pumped Nd∶YAG lasers to hyperfine transitions in molecular iodine. Optics Letters, 17, 1204(1992).

    [70] A SUEMASE, O A SHIMO, K NAKAGAWA et al. Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO. CEAS Space Journal, 9, 1-7(2017).

    [71] V SCHKOLNIK, K DÖRINGSHOFF, F B GUTSCH et al. JOKARUS-Design of a compact optical iodine frequency reference for a sounding rocket mission. EPJ Quantum Technology, 4, 1-10(2017).

    Qiang LIU, Zaiyuan WANG, Jiehao WANG, Yuhang LI. Research Progress on Low-noise Laser for Space-based Gravitational Wave Detector(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751409
    Download Citation