• Acta Photonica Sinica
  • Vol. 51, Issue 7, 0751409 (2022)
Qiang LIU1、2、*, Zaiyuan WANG1、2, Jiehao WANG1、2, and Yuhang LI1、2
Author Affiliations
  • 1Department of Precision Instrument,Tsinghua University,Beijing 100084,China
  • 2Key Laboratory of Photonic Control Technology(Tsinghua University),Ministry of Education,Beijing 100084,China
  • show less
    DOI: 10.3788/gzxb20225107.0751409 Cite this Article
    Qiang LIU, Zaiyuan WANG, Jiehao WANG, Yuhang LI. Research Progress on Low-noise Laser for Space-based Gravitational Wave Detector(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751409 Copy Citation Text show less
    Schematic of space-based gravitational wave detector constellations[13]
    Fig. 1. Schematic of space-based gravitational wave detector constellations13
    Schematic of low-noise MOPA laser
    Fig. 2. Schematic of low-noise MOPA laser
    Schematic of NPRO
    Fig. 3. Schematic of NPRO
    HSL prototype for NGGM at NPL laboratories
    Fig. 4. HSL prototype for NGGM at NPL laboratories
    Delivered m-NPRO packages and photo of the baseline fiber amplifier
    Fig. 5. Delivered m-NPRO packages and photo of the baseline fiber amplifier
    RIN and frequency noise of fiber laser and NPRO
    Fig. 6. RIN and frequency noise of fiber laser and NPRO
    RIN and frequency noise of PW-ECL and NPRO
    Fig. 7. RIN and frequency noise of PW-ECL and NPRO
    Schematic layout and photograph of the micro-integrated PW-ECL
    Fig. 8. Schematic layout and photograph of the micro-integrated PW-ECL
    The first prototype of a laser for LISA
    Fig. 9. The first prototype of a laser for LISA
    Schematic diagram of I2-stabilized laser for DECIGO
    Fig. 10. Schematic diagram of I2-stabilized laser for DECIGO
    Schematic diagram of fiber amplifier for DECIGO
    Fig. 11. Schematic diagram of fiber amplifier for DECIGO
    DBR laser head and schematic of the internal structure for Tianqin-1 mission
    Fig. 12. DBR laser head and schematic of the internal structure for Tianqin-1 mission
    Principle diagram of laser source for Taiji-1 satellite
    Fig. 13. Principle diagram of laser source for Taiji-1 satellite
    Schematic of suppressing the intensity noise based on optoelectronic feedback control
    Fig. 14. Schematic of suppressing the intensity noise based on optoelectronic feedback control
    Schematic of the experimental setup and measurement of the RPN
    Fig. 15. Schematic of the experimental setup and measurement of the RPN
    Low-noise laser developed by Tsinghua University
    Fig. 16. Low-noise laser developed by Tsinghua University
    Schematic of the PDH laser frequency stabilization
    Fig. 17. Schematic of the PDH laser frequency stabilization
    Frequency noise spectral density between the PDH and the molecular iodine
    Fig. 18. Frequency noise spectral density between the PDH and the molecular iodine
    MissionArmlengthFrequency rangeStrain sensitivityOperation orbitLunch time
    DECIGO1.0×103 km0.1 Hz~10 Hz10-23/Hz1/2Heliocentric2030
    LISA2.5×106 km1 mHz~1 Hz10-20/Hz1/2Heliocentric2034
    Taiji3.0×106 km0.1 mHz~1 Hz10-20/Hz1/2Heliocentric2033
    TianQin1.7×105 km0.1 mHz~1 Hz10-20/Hz1/2Geocentric2035
    Table 1. Design parameters for space-based gravitational wave detectors
    MissionsLaser typeWavelength/nmPower/WPower stability/Hz-1/2Frequency stability/(Hz·Hz-1/2
    DECIGOMOPA515101×10-8@1 Hz1 @1 Hz
    LISAMOPA1 06422×10-4@0.1 mHz~1 Hz30 @10 mHz
    TaijiMOPA1 064210-4@0.1 mHz~1 Hz30 @0.1 mHz~1 Hz
    TianQinMOPA1 06442×10-4@1 mHz~1 Hz10 @10 mHz
    Table 2. Key parameters of low-noise lasers for space-based gravitational wave detector
    Qiang LIU, Zaiyuan WANG, Jiehao WANG, Yuhang LI. Research Progress on Low-noise Laser for Space-based Gravitational Wave Detector(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751409
    Download Citation