• Photonics Research
  • Vol. 4, Issue 6, 262 (2016)
Leiming Wu1, Jun Guo1, Hailin Xu2, Xiaoyu Dai1, and Yuanjiang Xiang1、*
Author Affiliations
  • 1SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.1364/PRJ.4.000262 Cite this Article Set citation alerts
    Leiming Wu, Jun Guo, Hailin Xu, Xiaoyu Dai, Yuanjiang Xiang. Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes[J]. Photonics Research, 2016, 4(6): 262 Copy Citation Text show less
    References

    [1] J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, S. S. Yee. Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int. J. Food Microbiol., 75, 61-69(2002).

    [2] A. Rasooly. Surface plasmon resonance analysis of staphylococcal enterotoxin B in food. J. Food Protect., 64, 37-43(2001).

    [3] E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, L. M. Lechuga. Multi-analyte SPR immunoassays for environmental biosensing of pesticides. Anal. Bionanal. Chem., 387, 1449-1458(2007).

    [4] C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, L. Song. Detection of microcystins in environmental samples using surface plasmon resonance biosensor. Talanta, 80, 407-410(2009).

    [5] J. W. Chung, S. D. Kim, R. Bernhardt, J. C. Pyun. Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sens. Actuators B, 111, 416-422(2005).

    [6] J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, S. Jiang. Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Anal. Bioanal. Chem., 393, 1157-1163(2009).

    [7] D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, M. N. Armenise. Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications. Opt. Laser Technol., 77, 151-161(2016).

    [8] C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, M. N. Armenise. Label-free optical resonant sensors for biochemical applications. Prog. Quantum Electron., 37, 51-107(2013).

    [9] D. Sarid. Long-range surface-plasma waves on very thin metal films. Phys. Rev. Lett., 47, 1927-1930(1981).

    [10] F. Yang, J. R. Sambles, G. W. Bradberry. Long-range surface modes supported by thin films. Phys. Rev. B, 44, 5855-5872(1991).

    [11] K. Matsubara, S. Kawata, S. Minami. Multilayer system for a high-precision surface plasmon resonance sensor. Opt. Lett., 15, 75-77(1990).

    [12] J. Dostálek, A. Kasry, W. Knoll. Long range surface plasmons for observation of biomolecular binding events at metallic surfaces. Plasmonics, 2, 97-106(2007).

    [13] S. Hayashi, D. V. Nesterenko, Z. Sekkat. Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors. Appl. Phys. Express, 8, 022201(2015).

    [14] Z. Salamon, H. A. Macleod, G. Tollin. Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. Biophys. J., 73, 2791-2797(1997).

    [15] J. Homola. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev., 108, 462-493(2008).

    [16] G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, S. W. Koch. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys., 71, 1591-1639(1999).

    [17] V. G. Ta’Eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, B. Luther-Davies. All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides. Opt. Express, 14, 11242-11247(2006).

    [18] P. K. Maharana, R. Jha. Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sens. Actuators B, 169, 161-166(2012).

    [19] P. K. Maharana, R. Jha, S. Palei. Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sens. Actuators B, 190, 494-501(2014).

    [20] P. K. Maharana, S. Bharadwaj, R. Jha. Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism. J. Appl. Phys., 114, 014304(2013).

    [21] A. W. Wark, H. J. Lee, R. M. Corn. Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal. Chem., 77, 3904-3907(2005).

    [22] Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, W. Knoll. Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix. Anal. Chem., 81, 9625-9632(2009).

    [23] R. Jha, A. K. Sharma. Chalcogenide glass prism based SPR sensor with Ag–Au bimetallic nanoparticle alloy in infrared wavelength region. J. Opt. A, 11, 045502(2009).

    [24] P. K. Maharana, T. Srivastava, R. Jha. On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared. Plasmonics, 9, 1113-1120(2014).

    [25] R. Verma, B. D. Gupta, R. Jha. Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B, 160, 623-631(2011).

    [26] S. Zeng, S. Hu, J. Xia, A. Tommy, Q. D. Xuan, M. M. Xiang, C. Philippe, Y. Ken-Tye. Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B, 207, 801-810(2015).

    [27] A. K. Sharma, B. D. Gupta. On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys., 101, 093111(2007).

    [28] L. Wu, H. S. Chu, W. S. Koh, E. P. Li. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express, 18, 14395-14400(2010).

    [29] B. D. Gupta, A. K. Sharma. Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sens. Actuators B, 107, 40-46(2005).

    [30] V. Giannini, Y. Zhang, M. Forcales, J. Gómez Rivas. Long-range surface polaritons in ultra-thin films of silicon. Opt. Express, 16, 19674-19685(2008).

    [31] O. Krupin, H. Asiri, C. Wang, R. N. Tait, P. Berini. Biosensing using straight long-range surface plasmon waveguides. Opt. Express, 21, 698-709(2013).

    [32] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev., 105, 1103-1170(2005).

    [33] N. G. Sahoo, Y. Pan, L. Li, S. H. Chan. Graphene-based materials for energy conversion. Adv. Mater., 24, 4203-4210(2012).

    [34] Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, D. Tang. Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep., 4, 5483(2014).

    [35] Y. Xiang, X. Dai, J. Guo, S. Wen. Tunable optical bistability at the graphene-covered nonlinear interface. Appl. Phys. Lett., 104, 051108(2014).

    [36] X. Dai, L. Jiang, Y. Xiang. Low threshold optical bistability at terahertz frequencies with graphene surface plasmons. Sci. Rep., 5, 12271(2015).

    [37] L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, D. Fan. Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor. IEEE Photon. J., 8, 4801409(2016).

    [38] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 22, 3906-3924(2010).

    [39] H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, Z. Jin. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules, 11, 2345-2351(2010).

    [40] S. H. Choi, Y. L. Kim, K. M. Byun. Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt. Express, 19, 458-466(2011).

    [41] F. H. Koppens, D. E. Chang, F. J. Garcia de Abajo. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett., 11, 3370-3377(2011).

    [42] M. Bruna, S. Borini. Optical constants of graphene layers in the visible range. Appl. Phys. Lett., 94, 031901(2009).

    CLP Journals

    [1] Ruixuan Chen, Bowen Bai, Zhiping Zhou. Low-loss hybrid plasmonic TM-pass polarizer using polarization-dependent mode conversion[J]. Photonics Research, 2020, 8(7): 1197

    Leiming Wu, Jun Guo, Hailin Xu, Xiaoyu Dai, Yuanjiang Xiang. Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes[J]. Photonics Research, 2016, 4(6): 262
    Download Citation