• Laser & Optoelectronics Progress
  • Vol. 60, Issue 14, 1415002 (2023)
Yanqiong Shi1、*, Kefan Li1, Rongsheng Lu2, and Xiyong Zhou1
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, Anhui, China
  • 2School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
  • show less
    DOI: 10.3788/LOP222047 Cite this Article Set citation alerts
    Yanqiong Shi, Kefan Li, Rongsheng Lu, Xiyong Zhou. Kinematic Parameter Identification of Industrial Robot Based on Binocular Vision[J]. Laser & Optoelectronics Progress, 2023, 60(14): 1415002 Copy Citation Text show less
    3D coordinate system relationship diagram of robotic arm
    Fig. 1. 3D coordinate system relationship diagram of robotic arm
    Binocular vision recognition robot kinematic parameter system
    Fig. 2. Binocular vision recognition robot kinematic parameter system
    Pseudo-random sequence and Halton sequence comparison chart
    Fig. 3. Pseudo-random sequence and Halton sequence comparison chart
    Flow chart of kinematic parameter identification by STAPSO
    Fig. 4. Flow chart of kinematic parameter identification by STAPSO
    Layout of the experimental device
    Fig. 5. Layout of the experimental device
    Measurement error diagrams of binocular vision system. (a) 70 mm error point set; (b) x, y axis 10 mm, 70 mm average error; (c) x-axis range error; (d) y-axis range error
    Fig. 6. Measurement error diagrams of binocular vision system. (a) 70 mm error point set; (b) x, y axis 10 mm, 70 mm average error; (c) x-axis range error; (d) y-axis range error
    Spatial distribution of collection points
    Fig. 7. Spatial distribution of collection points
    Comparison chart of PSO algorithm iteration
    Fig. 8. Comparison chart of PSO algorithm iteration
    Comparison of identification results of each algorithm
    Fig. 9. Comparison of identification results of each algorithm
    jαi-1 /(°ai-1 /mmθi /(°di /mm
    100θ1144
    2900θ2-900
    30-264θ30
    40-236θ4-90106
    5900θ5114
    6-900θ667
    Table 1. MDH model parameter table
    jαi-1 /(°ai-1 /mmθi /(°di /mm
    10-0.17460θ1-0.3136144
    290+0.61590+0.9999θ2-90-0.99930
    30-0.7798-264+0.9999θ3+0.99990
    40-0.5255-236-0.2770θ4-90-0.6520106+0.5261
    590+0.99990+0.2263θ5+0.1365114+0.2078
    6-90+0.64890θ667+0.1015
    Table 2. Parameter table of the identified MDH model
    ParameterBefore calibrationtrust-region(increased accuracy /%)PSO(increased accuracy /%)STAPSO(increased accuracy /%)
    Maximum error /mm2.79030.8484(69.59)0.843(69.79)0.573(79.46)
    Minimum error /mm0.12650.055(56.52)0.051(59.68)0.0501(60.40)
    Average error /mm1.16010.3023(73.94)0.3164(72.73)0.226(80.52)
    Standard deviation /mm0.65820.2212(66.39)0.2037(69.05)0.1412(78.55)
    Table 3. Statistical analysis of distance error
    Yanqiong Shi, Kefan Li, Rongsheng Lu, Xiyong Zhou. Kinematic Parameter Identification of Industrial Robot Based on Binocular Vision[J]. Laser & Optoelectronics Progress, 2023, 60(14): 1415002
    Download Citation