• Opto-Electronic Engineering
  • Vol. 47, Issue 10, 200237 (2020)
Shen Yijia1、2, Xie Xin1、2, Pu Mingbo1、2, Zhang Fei1, Ma Xiaoliang11、3, Guo Yinghui1、2, Li Xiong1、2, Wang Changtao1、2, and Luo Xiangang1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.200237 Cite this Article
    Shen Yijia, Xie Xin, Pu Mingbo, Zhang Fei, Ma Xiaoliang1, Guo Yinghui, Li Xiong, Wang Changtao, Luo Xiangang. Achromatic metalens based on coordinative modulation of propagation phase and geometric phase[J]. Opto-Electronic Engineering, 2020, 47(10): 200237 Copy Citation Text show less
    References

    [1] Luo X G. Principles of electromagnetic waves in metasurfac-es[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.

    [3] WuPC, Zhu WM, Shen ZX, et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J]. Advanced Optical Materials, 2017, 5(7): 1600938.

    [4] Pu M B,Li X,Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396.

    [5] Yue FY,WenDD, Xin J T, et al. Vector vortexbeam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558–1563.

    [6] Wang S C, Ouyang X Y, Feng Z W, et al. Diffractive photonic applications mediated by laser reduced graphene oxides[J]. Opto-Electronic Advances, 2018, 1(2): 170002.

    [7] Li Z, Cheng H, Liu Z C, et al. Plasmonic airy beam generation by both phase and amplitude modulation with metasurfaces[J]. Advanced Optical Materials, 2016, 4(8): 1230–1235.

    [9] Huang L L, Mühlenbernd H, Li X W, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Ad-vanced Materials, 2015, 27(41): 6444–6449.

    [10] Huang Y W, Chen W T, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122–3127.

    [11] Ni XJ, KildishevAV,ShalaevVM.Metasurface hologramsfor visible light[J]. Nature Communications, 2013, 4(1): 2807.

    [12] Wan W W, Gao J, Yang X D. Full-color plasmonic metasurface holograms[J]. ACS Nano, 2016, 10(12): 10671–10680.

    [13] Ni X J, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310–1314.

    [14] Xie X,Pu M B,Li X, et al. Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces[J]. Photonics Re-search, 2019, 7(5): 586–593.

    [15] DouKH, Xin X,Pu M B, et al. Off-axis multi-wavelength dis-persion controlling metalens for multi-color imaging[J]. Op-to-Electronic Advances, 2020, 3(4): 190005.

    [16] Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 2018, 7: 85.

    [17] Li Y,Li X, Pu M B, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6(1): 19885.

    [18] Yan C,Li X,Pu M B, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces[J]. Applied Physics Letters, 2019, 114(16): 161904.

    [19] Khorasaninejad M, Aieta F, Kanhaiya P, et al. Achromatic me-tasurface lens at telecommunication wavelengths[J]. Nano Letters, 2015, 15(8): 5358–5362.

    [20] Shi Z J, Khorasaninejad M, Huang Y W, et al. Single-layer metasurface with controllable multiwavelength functions[J]. Nano Letters, 2018, 18(4): 2420–2427.

    [21] Groever B, Chen W T, Capasso F. Meta-lens doublet in the visible region[J]. Nano Letters, 2017, 17(8): 4902–4907.

    [22] Khorasaninejad M, Shi Z, Zhu A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819–1824.

    [23] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220–226.

    [24] Wang S M,Wu PC,SuV C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227–232.

    [25] Wang S M,WuP C,Su V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187.

    [26] Pancharatnam S. Generalized theory of interference and its applications[J]. Proceedings of the Indian Academy of Sciences-Section A, 1956, 44(6): 398–417.

    [27] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A Mathematical, and Physical Sciences, 1984, 392(1802): 45–57.

    [28] Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wa-vefront shaping based on asymmetric photonic spin–orbit In-teractions[J]. Advanced Functional Materials, 2017, 27(47): 1704295.

    [29] Devlin R C, Khorasaninejad M, Chen W T, et al. High efficiency dielectric metasurfaces at visible wavelengths[Z]. arXiv 1603.02735[physics.optics], 2016.

    [30] Khorasaninejad M, Chen W T, Devlin R C, et al. Planar Lenses at Visible Wavelengths[Z]. arXiv 1605.02248[physics.optics], 2016.

    [31] Kennedy J, Eberhart R. Particle swarm optimiza-tion[C]//Proceedings of ICNN'95-International Conference on Neural Networks, Perth, 1995, 4: 1942–1948.

    [32] Barakat R. Rayleigh wavefront criterion[J]. Josa, 1965, 55(5): 572–573. Achromatic metalens based on coordinative modulation of propagation

    Shen Yijia, Xie Xin, Pu Mingbo, Zhang Fei, Ma Xiaoliang1, Guo Yinghui, Li Xiong, Wang Changtao, Luo Xiangang. Achromatic metalens based on coordinative modulation of propagation phase and geometric phase[J]. Opto-Electronic Engineering, 2020, 47(10): 200237
    Download Citation