• Journal of Semiconductors
  • Vol. 44, Issue 10, 102101 (2023)
Chunbao Feng1,2, Changhe Wu1, Xin Luo1, Tao Hu1..., Fanchuan Chen1, Shichang Li1,2, Shengnan Duan1,2, Wenjie Hou3, Dengfeng Li1,2,*, Gang Tang4,** and Gang Zhang5,***|Show fewer author(s)
Author Affiliations
  • 1School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 2Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 3School of Computer Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
  • 4Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
  • 5Institute of High Performance Computing, A*STAR, 138632, Singapore
  • show less
    DOI: 10.1088/1674-4926/44/10/102101 Cite this Article
    Chunbao Feng, Changhe Wu, Xin Luo, Tao Hu, Fanchuan Chen, Shichang Li, Shengnan Duan, Wenjie Hou, Dengfeng Li, Gang Tang, Gang Zhang. Pressure-dependent electronic, optical, and mechanical properties of antiperovskite X3NP (X = Ca, Mg): A first-principles study[J]. Journal of Semiconductors, 2023, 44(10): 102101 Copy Citation Text show less
    References

    [1] T M Brenner, D A Egger, L Kronik et al. Hybrid organic-inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater, 1, 15007(2016).

    [2] A Tiwari, N S Satpute, C M Mehare et al. Challenges, recent advances and improvements for enhancing the efficiencies of ABX3-based PeLEDs (perovskites light emitting diodes): A review. J Alloys Compd, 850, 156827(2021).

    [3] S Y Sun, T Salim, N Mathews et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ Sci, 7, 399(2014).

    [4] G C Xing, N Mathews, S Y Sun et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 342, 344(2013).

    [5] J Y Kim, J W Lee, H S Jung et al. High-efficiency perovskite solar cells. Chem Rev, 120, 7867(2020).

    [6] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [8] S Abhishek, R Marshall Ashley, M Sanehira Erin et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 354, 92(2016).

    [9] M G Ju, M Chen, Y Y Zhou et al. Toward eco-friendly and stable perovskite materials for photovoltaics. Joule, 2, 1231(2018).

    [10] P F Fu, S L Hu, J Tang et al. Material exploration via designing spatial arrangement of octahedral units: A case study of lead halide perovskites. Front Optoelectron, 14, 252(2021).

    [11] H X Zhong, C B Feng, H Wang et al. Structure–composition–property relationships in antiperovskite nitrides: Guiding a rational alloy design. ACS Appl Mater Interfaces, 13, 48516(2021).

    [12] D Han, C B Feng, M H Du et al. Design of high-performance lead-free quaternary antiperovskites for photovoltaics via ion type inversion and anion ordering. J Am Chem Soc, 143, 12369(2021).

    [13] Y Mochizuki, H J Sung, A Takahashi et al. Theoretical exploration of mixed-anion antiperovskite semiconductors M3XN(M=Mg, Ca, Sr, Ba;X=P, As, Sb, Bi). Phys Rev Materials, 4, 044601(2020).

    [14] J Dai, M G Ju, L Ma et al. Bi(Sb)NCa3: Expansion of perovskite photovoltaics into all-inorganic anti-perovskite materials. J Phys Chem C, 123, 6363(2019).

    [15] K N Heinselman, S Lany, J D Perkins et al. Thin film synthesis of semiconductors in the Mg–Sb–N materials system. Chem Mater, 31, 8717(2019).

    [16] F Gäbler, M Kirchner, W Schnelle et al. (Sr3N)E and (Ba3N)E (E = Sb, Bi): Synthesis, crystal structures, and physical properties. Zeitschrift Anorg Allge Chemie, 630, 2292(2004).

    [17] R Zada, Z Ali, S Mehmood. Optoelectronic, elastic and thermoelectric properties of the perovskites (Sr3N)Sb and (Sr3N)Bi. Mater Sci Semicond Process, 147, 106734(2022).

    [18] E O Chi, W S Kim, N H Hur et al. New Mg-based antiperovskites PnNMg3 (Pn=As, Sb). Solid State Commun, 121, 309(2002).

    [19] M Y Chern, D A Vennos, F J Disalvo. Synthesis, structure, and properties of anti-perovskite nitrides Ca3MN, M=P, As, Sb, Bi, Ge, Sn, and Pb. J Solid State Chem, 96, 415(1992).

    [20] R Niewa, W Schnelle, F R Wagner. Synthesis, crystal structure and physical properties of (Ca3N)Tl. Z Anorg Allg Chem, 627, 365(2001).

    [21] D Stoiber, R Niewa. Perovskite distortion inverted: Crystal structures of (A3N)As (A = Mg, Ca, Sr, Ba). Z Anorg Allg Chem, 645, 329(2019).

    [22] S Iqbal, G Murtaza, R Khenata et al. Electronic and optical properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds. J Electron Mater, 45, 4188(2016).

    [23] I Ullah, G Murtaza, R Khenata et al. Structural and optoelectronic properties of X3ZN (X = Ca, Sr, Ba; Z = As, Sb, Bi) anti-perovskite compounds. J Electron Mater, 45, 3059(2016).

    [24] B He, C Dong, L H Yang et al. CuNNi3: A new nitride superconductor with antiperovskite structure. Supercond Sci Technol, 26, 125015(2013).

    [25] M Uehara, A Uehara, K Kozawa et al. New antiperovskite superconductor ZnNNi3, and related compounds CdNNi3 and InNNi3. Phys C Supercond Appl, 470, S688(2010).

    [26] L L Shan, S J Feng, X S Liu et al. Superconductivity and magnetic properties in antiperovskite nitride ZnNNi3. Phys C Supercond Appl, 603, 1354158(2022).

    [27] J H Shim, S K Kwon, B I Min. Electronic structures of antiperovskite superconductors MgXNi3(X=B, C, and N). Phys Rev B, 64, 180510(2001).

    [28] X H Zhang, Y Yin, Q Yuan et al. Magnetoresistance reversal in antiperovskite compound Mn3Cu0.5Zn0.5N. J Appl Phys, 115, 123905(2014).

    [29] H Sakakibara, H Ando, Y Kuroki et al. Magnetic properties and anisotropic magnetoresistance of antiperovskite nitride Mn3GaN/Co3FeN exchange-coupled bilayers. J Appl Phys, 117, 17D725(2015).

    [30] T Shibayama, K Takenaka. Giant magnetostriction in antiperovskite Mn3CuN. J Appl Phys, 109, 07A928(2011).

    [31] S Amraoui, A Feraoun, M Kerouad. Theoretical study of the magnetic and magnetocaloric properties of the ZnFe3N antiperovskite. Curr Appl Phys, 31, 68(2021).

    [32] M Bilal, M Shafiq, B Khan et al. Antiperovskite compounds SbNSr3 and BiNSr3: Potential candidates for thermoelectric renewable energy generators. Phys Lett A, 379, 206(2015).

    [33] U Rani, P K Kamlesh, A Shukla et al. Emerging potential antiperovskite materials ANX3 (A = P, As, Sb, Bi; X = Sr, Ca, Mg) for thermoelectric renewable energy generators. J Solid State Chem, 300, 122246(2021).

    [34] S Iikubo, K Kodama, K Takenaka et al. Magnetic structure and local lattice distortion in giant negative thermal expansion material Mn3Cu1–xGexN. J Phys: Conf Ser, 251, 012014(2010).

    [35] T Hamada, K Takenaka. Giant negative thermal expansion in antiperovskite Manganese nitrides. J Appl Phys, 109, 07E309(2011).

    [36] R Yu, H M Weng, Z Fang et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys Rev Lett, 115, 036807(2015).

    [37] C X Quintela, N Campbell, D F Shao et al. Epitaxial thin films of Dirac semimetal antiperovskite Cu3PdN. APL Mater, 5, 096103(2017).

    [38] W F Goh, W E Pickett. Coemergence of Dirac and multi-weyl topological excitations in pnictide antiperovskites. Phys Rev B, 98, 125147(2018).

    [39] P D Sreedevi, R Vidya, P Ravindran. Antiperovskite materials as promising candidates for efficient tandem photovoltaics: First-principles investigation. Mater Sci Semicond Process, 147, 106727(2022).

    [40] D Samanta, P K Saha, B Ghosh et al. Pressure-induced emergence of visible luminescence in lead free halide perovskite Cs3Bi2Br9: Effect of structural distortion. J Phys Chem C, 125, 3432(2021).

    [41] Y Q Cui, H Cheng, H Tian et al. Pressure-induced reconstructive phase transitions, polarization with metallicity, and enhanced hardness in antiperovskite MgCNi3. Phys Chem Chem Phys, 23, 18221(2021).

    [42] R J Fu, Y P Chen, X Yong et al. Pressure-induced structural transition and band gap evolution of double perovskite Cs2AgBiBr6 nanocrystals. Nanoscale, 11, 17004(2019).

    [43] L W Wu, Z Y Dong, L Zhang et al. High-pressure band-gap engineering and metallization in the perovskite derivative Cs3Sb2I9. Chem Sus Chem, 12, 3971(2019).

    [44] H Cheng, A J Mao, S M Yang et al. Correction: Semiconductor-to-metal reconstructive phase transition and superconductivity of anti-perovskite Ca3PN under hydrostatic pressure. J Mater Chem C, 8, 13090(2020).

    [45] D Samanta, S P Chaudhary, B Ghosh et al. Pressure-induced emission enhancement and bandgap narrowing: Experimental investigations and first-principles theoretical simulations on the model halide perovskite Cs3Sb2Br9. Phys Rev B, 105, 104103(2022).

    [46] L Zhang, C M Liu, L R Wang et al. Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9. Angew Chem Int Ed, 57, 11213(2018).

    [47] Q Li, L X Yin, Z W Chen et al. High pressure structural and optical properties of two-dimensional hybrid halide perovskite (CH3NH3)3Bi2Br9. Inorg Chem, 58, 1621(2019).

    [48] Z W Ma, Z Liu, S Y Lu et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nat Commun, 9, 1(2018).

    [49] M Szafrański, A Katrusiak. Mechanism of pressure-induced phase transitions, amorphization, and absorption-edge shift in photovoltaic methylammonium lead iodide. J Phys Chem Lett, 7, 3458(2016).

    [50] K Momma, F Izumi. VESTA: A three-dimensional visualization system for electronic and structural analysis. J Appl Cryst, 41, 653(2008).

    [51] X Y Wang, H Tian, X Li et al. Pressure effects on the structures and electronic properties of halide perovskite CsPbX3 (X = I, Br, Cl). Phys Chem Chem Phys, 23, 3479(2021).

    [52] A Majumdar, A A Adeleke, S Chakraborty et al. Emerging piezochromism in lead free alkaline earth chalcogenide perovskite AZrS3 (A = Mg, Ca, Sr and Ba) under pressure. J Mater Chem C, 8, 16392(2020).

    [53] G Tang, P Ghosez, J W Hong. Band-edge orbital engineering of perovskite semiconductors for optoelectronic applications. J Phys Chem Lett, 12, 4227(2021).

    [54] W M Ming, H L Shi, M H Du. Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3. J Mater Chem A, 4, 13852(2016).

    [55] E J Juarez-Perez, R S Sanchez, L Badia et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J Phys Chem Lett, 5, 2390(2014).

    [56] D Han, H L Shi, W M Ming et al. Unraveling luminescence mechanisms in zero-dimensional halide perovskites. J Mater Chem C, 6, 6398(2018).

    [57] A Takahashi, Y Kumagai, J Miyamoto et al. Machine learning models for predicting the dielectric constants of oxides based on high-throughput first-principles calculations. Phys Rev Materials, 4, 103801(2020).

    [58] X Y Zhao, D Vanderbilt. Phonons and lattice dielectric properties of zirconia. Phys Rev B, 65, 075105(2002).

    [59] G Tang, Z W Xiao, H Hosono et al. Layered halide double perovskites Cs3+nM(II)nSb2X9+3n (M = Sn, Ge) for photovoltaic applications. J Phys Chem Lett, 9, 43(2018).

    [60] X G Zhao, J H Yang, Y H Fu et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J Am Chem Soc, 139, 2630(2017).

    [61] M Shirayama, H Kadowaki, T Miyadera et al. Optical transitions in hybrid perovskite solar cells: Ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3. Phys Rev Applied, 5, 014012(2016).

    [62] T Yokoyama, F Oba, A Seko et al. Theoretical photovoltaic conversion efficiencies of ZnSnP2, CdSnP2, and Zn1-xCdxSnP2 alloys. Appl Phys Express, 6, 061201(2013).

    [63] C N Savory, A M Ganose, W Travis et al. An assessment of silver copper sulfides for photovoltaic applications: Theoretical and experimental insights. J Mater Chem A, 4, 12648(2016).

    [64] D Han, M H Du, M L Huang et al. Ground-state structures, electronic structure, transport properties and optical properties of Ca-based anti-Ruddlesden-Popper phase oxide perovskites. Phys Rev Materials, 6, 114601(2022).

    [65] K A Bush, N Rolston, A Gold-Parker et al. Controlling thin-film stress and wrinkling during perovskite film formation. ACS Energy Lett, 3, 1225(2018).

    [66] L Guo, G Tang, J W Hong. Mechanical properties of formamidinium halide perovskites FABX3 (FA=CH(NH2)2; B=Pb, Sn; X=Br, I) by first-principles calculations. Chin Phys Lett, 36, 056201(2019).

    [67] A Tasnim, M Mahamudujjaman, M Asif Afzal et al. Pressure-dependent semiconductor–metal transition and elastic, electronic, optical, and thermophysical properties of orthorhombic SnS binary chalcogenide. Results Phys, 45, 106236(2023).

    [68] Z Rong, C Zhi, C Jun. Ab initio calculation of mechanical, electronic and optical characteristics of chalcogenide perovskite BaZrS3 at high pressures. Acta Crystallogr C, 78, 570(2022).

    [69] Z J Wu, E J Zhao, H P Xiang et al. Publisher’s Note: Crystal structures and elastic properties of superhard IrN2 andIrN3 from first principles. Phys Rev B, 76, 059904(2007).

    [70] R Hill. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A, 65, 349(1952).

    [71] M A Hadi, M T Nasir, M Roknuzzaman et al. First-principles prediction of mechanical and bonding characteristics of new T2 superconductor Ta5GeB2. Phys Status Solidi B, 253, 2020(2016).

    [72] S Li, S G Zhao, H Q Chu et al. Unraveling the factors affecting the mechanical properties of halide perovskites from first-principles calculations. J Phys Chem C, 126, 4715(2022).

    [73] Z G Li, Y Qin, L Y Dong et al. Elastic and electronic origins of strain stabilized photovoltaic γ-CsPbI3. Phys Chem Chem Phys, 22, 12706(2020).

    [74] M H Elahmar, H Rached, D Rached et al. Structural, mechanical, electronic and magnetic properties of a new series of quaternary Heusler alloys CoFeMnZ (Z=Si, As, Sb): A first-principle study. J Magn Magn Mater, 393, 165(2015).

    [75] S K S Saravana Karthikeyan, P Santhoshkumar, Y C Joe et al. Understanding of the elastic constants, energetics, and bonding in dicalcium silicate using first-principles calculations. J Phys Chem C, 122, 24235(2018).

    Chunbao Feng, Changhe Wu, Xin Luo, Tao Hu, Fanchuan Chen, Shichang Li, Shengnan Duan, Wenjie Hou, Dengfeng Li, Gang Tang, Gang Zhang. Pressure-dependent electronic, optical, and mechanical properties of antiperovskite X3NP (X = Ca, Mg): A first-principles study[J]. Journal of Semiconductors, 2023, 44(10): 102101
    Download Citation