• Opto-Electronic Engineering
  • Vol. 47, Issue 6, 190296 (2020)
Xing Zhiming*, Jin Tao, and Zheng Lulu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190296 Cite this Article
    Xing Zhiming, Jin Tao, Zheng Lulu. A highly sensitive cantilever temperature sensor for small-area heat source temperature measurement[J]. Opto-Electronic Engineering, 2020, 47(6): 190296 Copy Citation Text show less
    References

    [1] Grover W H, Bryan A K, Diez-silva M, et al. Measuring single-cell density[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 10992–10996.

         Grover W H, Bryan A K, Diez-silva M, et al. Measuring single-cell density[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 10992–10996.

    [2] Childs P R N, Greenwood J R, Long C A. Review of temperature measurement[J]. Review of Scientific Instruments, 2000, 71(8): 2959–2978.

         Childs P R N, Greenwood J R, Long C A. Review of temperature measurement[J]. Review of Scientific Instruments, 2000, 71(8): 2959–2978.

    [3] Wang H, Zheng G, Chen H B. Frequency-modulated conti-nuous-wave laser interferometric optical fiber temperature sen-sor[J]. Opto-Electronic Engineering, 2019, 46(5): 180506.

         Wang H, Zheng G, Chen H B. Frequency-modulated conti-nuous-wave laser interferometric optical fiber temperature sen-sor[J]. Opto-Electronic Engineering, 2019, 46(5): 180506.

    [4] Ba D X, Chen C, Fu C, et al. A high-performance and tempera-ture-insensitive shape sensor based on DPP-BOTDA[J]. IEEE Photonics Journal, 2018, 10(1): 7100810.

         Ba D X, Chen C, Fu C, et al. A high-performance and tempera-ture-insensitive shape sensor based on DPP-BOTDA[J]. IEEE Photonics Journal, 2018, 10(1): 7100810.

    [5] Toda M, Inomata N, Ono T, et al. Cantilever beam temperature sensors for biological applications[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2017, 12(2): 153–160.

         Toda M, Inomata N, Ono T, et al. Cantilever beam temperature sensors for biological applications[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2017, 12(2): 153–160.

    [6] Harbin Institute of Technology. A cell temperature measurement system: CN106768406B [P]. 2019-03-26.

         Harbin Institute of Technology. A cell temperature measurement system: CN106768406B [P]. 2019-03-26.

    [7] Tang B B, Collings S K, Xiao H, et al. Bi-material strip based temperature sensor design and optimization through ther-mo-mechanical multi-physics modeling[J]. International Journal of Smart and Nano Materials, 2019, 10(1): 1–10.

         Tang B B, Collings S K, Xiao H, et al. Bi-material strip based temperature sensor design and optimization through ther-mo-mechanical multi-physics modeling[J]. International Journal of Smart and Nano Materials, 2019, 10(1): 1–10.

    [8] Boisen A, Dohn S, Keller S S, et al. Cantilever-like microme-chanical sensors[J]. Reports on Progress in Physics, 2011, 74(3): 036101.

         Boisen A, Dohn S, Keller S S, et al. Cantilever-like microme-chanical sensors[J]. Reports on Progress in Physics, 2011, 74(3): 036101.

    [9] Barnes J R, Stephenson R J, Woodburn C N, et al. A femtojoule calorimeter using micromechanical sensors[J]. Review of Scien-tific Instruments, 1994, 65(12): 3793–3798.

         Barnes J R, Stephenson R J, Woodburn C N, et al. A femtojoule calorimeter using micromechanical sensors[J]. Review of Scien-tific Instruments, 1994, 65(12): 3793–3798.

    [10] Roark R J, Young W C. Formulas for stress and strain[J]. Journal of Applied Mechanics, 1976, 43(3): 522.

         Roark R J, Young W C. Formulas for stress and strain[J]. Journal of Applied Mechanics, 1976, 43(3): 522.

    [11] Wu Y, Liu X M, Yang G G. Signal process in a novel system for nano-displacement measurement based on optical lever[J]. Opto-Electronic Engineering, 2007, 34(7): 30–34, 38.

         Wu Y, Liu X M, Yang G G. Signal process in a novel system for nano-displacement measurement based on optical lever[J]. Opto-Electronic Engineering, 2007, 34(7): 30–34, 38.

    [12] Fukuma T, Jarvis S P. Development of liquid-environment fre-quency modulation atomic force microscope with low noise def-lection sensor for cantilevers of various dimensions[J]. Review of Scientific Instruments, 2006, 77(4): 043701.

         Fukuma T, Jarvis S P. Development of liquid-environment fre-quency modulation atomic force microscope with low noise def-lection sensor for cantilevers of various dimensions[J]. Review of Scientific Instruments, 2006, 77(4): 043701.

    [13] Wang J J, Pang T. Hydrothermal synthesis of NaYF4: Yb3+, Sm3+ and photo-thermal effect under 980 nm excitation[J]. Scientia Sinica Chimica, 2019, 49(2): 311–318.

         Wang J J, Pang T. Hydrothermal synthesis of NaYF4: Yb3+, Sm3+ and photo-thermal effect under 980 nm excitation[J]. Scientia Sinica Chimica, 2019, 49(2): 311–318.

    [14] Chu C L, Fan S H. A novel long-travel piezoelectric-driven linear nanopositioning stage[J]. Precision Engineering, 2006, 30(1): 85–95.

         Chu C L, Fan S H. A novel long-travel piezoelectric-driven linear nanopositioning stage[J]. Precision Engineering, 2006, 30(1): 85–95.

    [15] Boyer J C, Cuccia L A, Capobianco J A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals[J]. Nano Letters, 2007, 7(3): 847–852.

         Boyer J C, Cuccia L A, Capobianco J A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals[J]. Nano Letters, 2007, 7(3): 847–852.

    Xing Zhiming, Jin Tao, Zheng Lulu. A highly sensitive cantilever temperature sensor for small-area heat source temperature measurement[J]. Opto-Electronic Engineering, 2020, 47(6): 190296
    Download Citation