• Infrared and Laser Engineering
  • Vol. 51, Issue 5, 20220302 (2022)
Jin Li1、2, Piyu Wang1、2, Zhengyu Wang1、2, Rui Niu1、2, Shuai Wan1、2、*, Guangcan Guo1、2, and Chunhua Dong1、2
Author Affiliations
  • 1Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
  • 2Center For Excellence in Quantum Information and Quantum Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.3788/IRLA20220302 Cite this Article
    Jin Li, Piyu Wang, Zhengyu Wang, Rui Niu, Shuai Wan, Guangcan Guo, Chunhua Dong. Optical frequency comb in silicon nitride microresonator(Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220302 Copy Citation Text show less
    References

    [1] K J Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] H Chen, Y Xiao. Applications of integrated microresonator-based optical frequency combs in precision measurement (Invited). Infrared and Laser Engineering, 50, 20210560(2021).

    [3] C H Dong, Y D Wang, H L Wang, et al. Optomechanical interfaces for hybrid quantum networks. National Science Review, 2, 510-519(2015).

    [4] F Vollmer, L Yang. Review label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices. Nanophotonics, 1, 267-291(2012).

    [5] L He, S K Ozdemir, L Yang. Whispering gallery microcavity lasers. Laser and Photonics Reviews, 7, 60-82(2013).

    [6] Q H Song. Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Science China Physics, Mechanics & Astronomy, 62, 074231(2019).

    [7] T J Kippenberg, R Holzwarth, S A Diddams. Microresonatorbased optical frequency combs. Science, 332, 555-559(2011).

    [8] W Jin, Q F Yang, L Chang, et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high Q microresonators. Nature Photonics, 15, 346-353(2021).

    [9] X Lu, G Moille, Q Li, et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nature Photonics, 13, 593-601(2019).

    [10] T J Kippenberg, K J Vahala. Cavity optomechanics: Backaction at the mesoscale. Science, 321, 1172(2008).

    [11] S Wan, R Niu, H L Ren, et al. Experimental demonstration of dissipative sensing in a self-interference microring resonator. Photonics Research, 6, 681-685(2018).

    [12] X X Xue, X P Zheng, B K Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nature Photonics, 13, 616-622(2019).

    [13] H J Chen, Q X Ji, H M Wang, et al. Chaos-assisted two-octave-spanning microcombs. Nature Communications, 11, 2336(2020).

    [14] Z Z Lu, H J Chen, W Q Wang, et al. Synthesized soliton crystals. Nature Communications, 12, 3179(2021).

    [15] H Z Weng, J Liu, A A Afridi, et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photonics Research, 9, 1351(2021).

    [16] C L Wang, Z W Fang, A L Yi, et al. High-Q microresonators on 4 H-silicon-carbide-on-insulator platform for nonlinear photonics. Light: Science & Applications, 10, 1-11(2021).

    [17] Y Bai, M Zhang, Q Shi, et al. Brillouin-kerr soliton frequency combs in an optical microresonator. Physical Review Letters, 126, 063901(2021).

    [18] J Wang, Z Lu, W Wang, et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Research, 8, 1964-1972(2020).

    [19] W Wang, L Wang, W Zhang. Advances in soliton microcomb generation. Advanced Photonics, 2, 34001(2020).

    [20] T Tan, Z Yuan, H Zhang, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nature Communications, 12, 6716(2021).

    [21] D T Spencer, T Drake, T C Briles, et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [22] P Marin-Palomo, J N Kemal, M Karpov, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [23] Z L Newman, V Maurice, T Drake, et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [24] F X Wang, W Wang, R Niu, et al. Quantum key distribution with on-chip dissipative kerr soliton. Laser & Photonics Reviews, 14, 1900190(2020).

    [25] Liu K, Jin N, Cheng H, et al. 720 million quality fact integrated allwaveguide photonic resonat [C]2021 Device Research Conference (DRC), 2021: 12.

    [26] M W Puckett, K Liu, N Chauhan, et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nature Communications, 12, 934(2021).

    [27] J Liu, G Huang, R N Wang, et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nature Communications, 12, 2236(2021).

    [28] Shaw M J, Guo J, Vawter G A, et al. Fabrication techniques f lowloss silicon nitride waveguides [C]Proc of SPIE, 2005, 5720: 109118.

    [29] X Tang, V Bayot, N Reckinger, et al. A simple method for measuring si-fin sidewall roughness by afm. IEEE Transactions on Nanotechnology, 8, 611-616(2009).

    [30] X Ji, F A S Barbosa, S P Roberts, et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619(2017).

    [31] J Liu, A S Raja, M Karpov, et al. Ultralowpower chip-based soliton microcombs for photonic integration. Optica, 5, 1347(2018).

    [32] S Wan, R Niu, Z Y Wang, et al. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators. Photonics Research, 8, 1342-1349(2020).

    [33] S Wan, R Niu, J L Peng, et al. Fabrication of the high-Q Si3 N4 microresonators for soliton microcombs. Chinese Optics Letters, 20, 032201(2022).

    [34] G Moille, D Westly, N G Orji, et al. Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion. Applied Physics Letters, 119, 121103(2021).

    [35] Y Hu, M Yu, D Zhu, et al. On-chip electro-optic frequency shifters and beam splitters. Nature, 599, 587-593(2021).

    [36] R K Dey, B Cui. Stitching error reduction in electron beam lithography with in-situ feedback using self-developing resist. Journal of Vacuum Science & Technology B, 31, 06F409(2013).

    [37] Z Lu, W Wang, W Zhang, et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Advances, 9, 025314(2019).

    [38] R Niu, S Wan, Z Y Wang, et al. Perfect soliton crystals in the high Q microrod resonator. IEEE Photonics Technology Letters, 33, 788-791(2021).

    [39] H Zhou, Y Geng, W Cui, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Science & Applications, 8, 1-10(2019).

    [40] J Li, S Wan, J L Peng, et al. Thermal tuning of mode crossing and the perfect soliton crystal in a Si3N4 microresonator. Optics Express, 30, 13690(2022).

    [41] X Ji, J Liu, J He, et al. Compact, spatial-mode-interaction-free, ultralowloss, nonlinear photonic integrated circuits. Communications Physics, 5, 1-9(2022).

    [42] M H P Pfeiffer, J Liu, A S Raja, et al. Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins. Optica, 5, 884(2018).

    Jin Li, Piyu Wang, Zhengyu Wang, Rui Niu, Shuai Wan, Guangcan Guo, Chunhua Dong. Optical frequency comb in silicon nitride microresonator(Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220302
    Download Citation