• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 4, 1730006 (2017)
Wei Qiao and Zhongjiang Chen*
Author Affiliations
  • Ministry of Education Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • show less
    DOI: 10.1142/s1793545817300063 Cite this Article
    Wei Qiao, Zhongjiang Chen. All-optically integrated photoacoustic and optical coherence tomography: A review[J]. Journal of Innovative Optical Health Sciences, 2017, 10(4): 1730006 Copy Citation Text show less
    References

    [1] L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photon. 3, 503–509 (2009).

    [2] L. V. Wang, S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).

    [3] R. A. Kruger, P. Liu, “Photoacoustic ultrasound: Pulse production and detection in 0.5% Liposyn,” Med. Phys. 21, 1179–1184 (1994).

    [4] G. Ku, L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett. 30, 507–509 (2005).

    [5] X. Wang, Y. Pang, G. Ku et al., “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).

    [6] M. Xu, Y. Xu, L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50, 1086–1099 (2003).

    [7] H. F. Zhang, K. Maslov, M. Sivaramakrishnan et al., “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).

    [8] M. Yamazaki, S. Sato, D. Saito et al., “Photoacoustic diagnosis of burns in ratstwo-dimensional photo-acoustic imaging of burned tissue,” Biomed. Opt. 4960, 7–13 (2003).

    [9] E. V. Savateeva, A. A. Karabutov, S. V. Solomatin et al., “ Optical properties of blood at various levels of oxygenation studied by time-resolved detection of laser-induced pressure profiles,” Int. Symp. Biomed. Opt. 4618, 63–75 (2002).

    [10] Y. Yao, D. Xing, Y. He et al., “ Acousto-optic tomography using amplitude-modulated focused ultrasound and a near-IR laser,” Quantum Electron. 31, 1023–1026 (2001).

    [11] K. Suzuki, Y. Yamohita, K. Ohta et al., “ Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: In vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).

    [12] X. Wang, Y. Pang, G. Ku et al., “ Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).

    [13] A. P. Jathoul, J. Laufer, O. Ogunlade et al., “ Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photon. 9, 239–242 (2015). ISI,

    [14] M. A. Pysz, S. S. Gambhir, J. K. Willmann, “Molecular imaging: Current status and emerging strategies,” Clin. Radiol. 65, 500–516 (2010).

    [15] J. Tian, J. Bai, X. P. Yan et al., “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Magaz. 27, 48–57 (2008).

    [16] Y. Shi, H. Qin, S. Yang et al., “ Thermally confined shell coating amplifies the photoacoustic conversion efficiency of nanoprobes,” Nano Res. 9, 3644–3655 (2016).

    [17] Z. Chen, S. Yang, D. Xing, “ In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy,” Opt. Lett. 37, 3414–3416 (2012).

    [18] D. Lee, C. Lee, S. Kim et al., “In vivo near infrared virtual intraoperative surgical photoacoustic optical coherence tomography,” Scien. Rep. 6, 35176 (2016).

    [19] T. Berer, E. Leiss-Holzinger, A. Hochreiner et al., “Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing,” J. Biomed. Opt. 20, 046013–046013 (2015).

    [20] L. Li, K. Maslov, G. Ku et al., “ Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies,” Opt. Exp. 17, 16450–16455 (2009).

    [21] S. Jiao, Z. Xie, H. F. Zhang et al., “Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 34, 2961–2963 (2009).

    [22] E. Z. Zhang, B. Povazay, J. Laufer et al., “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Exp. 2, 2202–2215 (2011).

    [23] C. Lee, S. Han, S. Kim et al., “Combined photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source,” Appl. Opt. 52, 1824–1828 (2013).

    [24] T. Liu, Q. Wei, J. Wang et al., “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Exp. 2, 1359–1365 (2011).

    [25] Z. Ding, H. Ren, Y. Zhao et al., “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).

    [26] R. F. Wagner, S. W. Smith, J. M. Sandrik et al., “Statistics of speckle in ultrasound B-scans,” IEEE Trans. Sonics Ultrasonics 30, 156–163 (1983).

    [27] D. R. Larson, W. R. Zipfel, R. M. Williams et al., “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).

    [28] Y. Wang, C. Li, R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36, 3975–3977 (2011).

    [29] Z. Chen, S. Yang, Y. Wang et al., “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106, 043701 (2015).

    [30] Z. Chen, S. Yang, Y. Wang et al., “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40, 2838–2841 (2015).

    [31] Z. Chen, S. Yang, D. Xing, “Optically integrated trimodality imaging system: Combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging,” Opt. Lett. 41, 1636–1639 (2016).

    [32] E. Zhang, J. Laufer, P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry–Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561–577 (2008).

    [33] S. Ashkenazi, Y. Hou, T. Buma et al., “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86, 134102 (2005).

    [34] Y. Hou, J. S. Kim, S. Ashkenazi et al., “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91, 073507 (2007).

    [35] P. Morris, A. Hurrell, A. Shaw et al., “A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soci. Am. 125, 3611–3622 (2009).

    [36] R. A. Noble, A. D. R. Jones, T. J. Robertson et al., “Novel, wide bandwidth, micromachined ultrasonic transducers,” IEEE Trans. Ultrasonics Ferroelectrics Freq. Contr. 48, 1495–1507 (2001).

    [37] K. A. Snook, J. Z. Zhao, C. F. F. Alves et al., “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrasonics Ferroelectrics Freq. Contr. 49, 169–176 (2002).

    [38] P. C. Beard, T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry–Perot interferometer,” Appl. Opt. 35, 663–675 (1996).

    [39] S. W. Huang, S. L. Chen, T. Ling et al., “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92, 193509 (2008).

    [40] C. Zhang, T. Ling, S. L. Chen et al., “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photon. 1, 1093–1098 (2014).

    [41] B. Dong, S. Chen, Z. Zhang et al., “Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications,” Opt. Lett. 39, 4372–4375 (2014).

    [42] C. Blatter, B. Grajciar, P. Zou et al., “Intrasweep phase-sensitive optical coherence tomography for noncontact optical photoacoustic imaging,” Opt. Lett. 37, 4368–4370 (2012).

    [43] G. Rousseau, A. Blouin, J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Exp. 3, 16–25 (2012).

    [44] S. J. Park, J. Eom, Y. H. Kim et al., “Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer,” Opt. Lett. 39, 4903–4906 (2014).

    [45] Y. Jia, J. C. Morrison, J. Tokayer et al., “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Exp. 3, 3127–3137 (2012).

    [46] B. Y. Hsieh, S. L. Chen, T. Ling et al., “All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering,” Photoacoustics 2, 39–46 (2014).

    [47] S. L. Chen, Z. Xie, L. J. Guo et al., “A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components,” Photoacoustics 1, 30–35 (2013).

    [48] B. Dong, H. Li, Z. Zhang et al., “Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection,” Optica 2, 169–176 (2015).

    [49] E. Z. Zhang, J. Laufer, B. Povazay et al., “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” SPIE 7564, 75640U-1 (2010).

    [50] M. Liu, N. Schmitner, M. G. Sandrian et al., “ In vivo three dimensional dual wavelength photoacoustic tomography imaging of the far red fluorescent protein E2-Crimson expressed in adult zebrafish,” Biomed. Opt. Exp. 4, 1846–1855 (2013).

    Wei Qiao, Zhongjiang Chen. All-optically integrated photoacoustic and optical coherence tomography: A review[J]. Journal of Innovative Optical Health Sciences, 2017, 10(4): 1730006
    Download Citation