• Journal of Innovative Optical Health Sciences
  • Vol. 6, Issue 4, 1350042 (2013)
LI-SHENG LIN1, LI-NA LIU1, HUI-FANG HUANG2, YUAN-ZHONG CHEN2, BU-HONG LI1、*, and ZHENG HUANG1
Author Affiliations
  • 1Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education Fujian Provincial Key Laboratory for Photonics Technology Fujian Normal University, Fuzhou 350007, P. R. China
  • 2Fujian Institute of Hematology, Union Hospital Fujian Medical University, Fuzhou 350001, P. R. China
  • show less
    DOI: 10.1142/s1793545813500429 Cite this Article
    LI-SHENG LIN, LI-NA LIU, HUI-FANG HUANG, YUAN-ZHONG CHEN, BU-HONG LI, ZHENG HUANG. CHARACTERIZING FLUORESCENCE LIFETIME OF NAD(P)H IN HUMAN LEUKEMIC MYELOID CELLS AND MONONUCLEAR CELLS[J]. Journal of Innovative Optical Health Sciences, 2013, 6(4): 1350042 Copy Citation Text show less
    References

    [1] S. Lane, R. Saal, P. Mollee, M. Jones, A. Grigg, K. Taylor, J. Seymour, G. Kennedy, B. Williams, K. Grimmett, V. Griffiths, D. Gill, M. Hourigan, P. Marlton, "A>or=1 log rise in RQ-PCR transcript levels defines molecular relapse in core binding factor acute myeloid leukemia and predicts subsequent morphologic relapse," Leuk. Lymphoma 49, 517–523 (2008).

    [2] H. G. Jorgensen, T. L. Holyoake, "A comparison of normal and leukemic stem cell biology in Chronic Myeloid Leukemia," Hematol. Oncol. 19, 89–106 (2001).

    [3] H. Q. Zhu, X. L. Liu, L. L. Song, Q. F. Liu, F. Y. Meng, S. Y. Zhou, "Minimal residual disease monitoring in chronic myeloid leukemia patients after allogeneic hematopoietic stem cell transplantation using interphase fluorescence in situ hybridization and real-time quantitative reverse transcription PCR," Chin. J. Cancer 29, 194–197 (2010).

    [4] A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, "Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species," J. Photochem. Photobiol. B. 31, 101–112 (1995).

    [5] Y. C. Wu, W. Zheng, J. Y. Qu, "Sensing cell metabolism by time-resolved autofluorescence," Opt. Lett. 31, 3122–3124 (2006).

    [6] D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, N. Ramanujam, "Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH," Cancer Res. 65, 8766–8773 (2005).

    [7] Q. R. Yu, A. A. Heikal, "Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level," J. Photochem. Photobiol. B. 95, 46–57 (2009).

    [8] H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, W. W. Webb, "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy," J. Biol. Chem. 280, 25119–25126 (2005).

    [9] D. Chorvat, A. Chorvatova, "Multi-wavelength fluorescence lifetime spectroscopy: A new approach to the study of endogenous fluorescence in living cells and tissues," Laser Phys. Lett. 6, 175–193 (2009).

    [10] Y. Cheng, A. Mateasik, N. Poirier, J. Miro, N. Dahdah, D. Chorvat, A. Chorvatova, "Analysis of NAD(P)H fluorescence components in cardiac myocytes from human biopsies, a new tool to improve diagnostics of rejection of transplanted patients," Proc. SPIE 7183, 71830K (2009).

    [11] M. Y. Berezin, S. Achilefu, "Fluorescence lifetime measurements and biological imaging," Chem. Rev. 110, 2641–2684 (2010).

    [12] B. Chance, P. Cohen, F. Jobsis, B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499–508 (1962).

    [13] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition, Springer-Verlag, New York (2006).

    [14] N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89–117 (2000).

    [15] R. Richards-Kortum, E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555–606 (1996).

    [16] K. Blinova, S. Carroll, S. Bose, A. V. Smirnov, J. J. Harvey, J. R. Knutson, R. S. Balaban, "Distribution of mitochondrial NADH fluorescence lifetimes: Steady-state kinetics of matrix NADH interactions," Biochemistry 44, 2585–2594 (2005).

    [17] M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, N. Ramanujam, "In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia," Proc. Natl. Acad. Sci. USA 104, 19494–19499 (2007).

    [18] J. A. Palero, A. N. Bader, H. S. de Bruijn, A. V. van den Heuvel, H. J. C. M. Sterenborg, H. C. Gerritsen, "In vivo monitoring of protein-bound and free NADH during ischemia by nonlinear spectral imaging microscopy," Biomed. Opt. Express 2, 1030– 1039 (2011).

    [19] M. Monici, G. Agati, F. Fusi, R. Pratesi, M. Paglierani, V. Santini, P. A. Bernabei, "Dependence of leukemic cell autofluorescence patterns on the degree of differentiation," Photochem. Photobiol. Sci. 2, 981–987 (2003).

    [20] T. Galeotti, G. D. van Rossum, D. H. Mayer, B. Chance, "On the fluorescence of NAD(P)H in whole-cell preparations of tumours and normal tissues," Eur. J. Biochem. 17, 485–496 (1970).

    [21] A. C. Croce, A. Spano, D. Locatelli, S. Barni, L. Sciola, G. Bottiroli, "Dependence of fibroblast autofluorescence properties on normal and transformed conditions. Role of the metabolic activity," Photochem. Photobiol. 69, 364–374 (1999).

    LI-SHENG LIN, LI-NA LIU, HUI-FANG HUANG, YUAN-ZHONG CHEN, BU-HONG LI, ZHENG HUANG. CHARACTERIZING FLUORESCENCE LIFETIME OF NAD(P)H IN HUMAN LEUKEMIC MYELOID CELLS AND MONONUCLEAR CELLS[J]. Journal of Innovative Optical Health Sciences, 2013, 6(4): 1350042
    Download Citation