[1] R M HARALICK, K SHANMUGAM, I DINSTEIN. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 610-621(1973).
[2] N DALAL, B TRIGGS. Histograms of oriented gradients for human detection, 886-893(20).
[3] G STOCKMAN, LG SHAPIRO. Computer Vision, 69-73(2002).
[4] J C PLATT(1998).
[5] S B KANG, J H LEE, K Y SONG et al. Automatic defect classification of TFT-LCD panels using machine learning, 2175-2177(5).
[6] W HUANG, H T LU. Defect Classification of TFT-LCD with bag of visual words approach, 167-170(27).
[7] L F KONG, J SHEN, Z L HU et al. Detection of Water-Stains defects in TFT-LCD based on machine vision, 1-5(13).
[8] 肖术明, 王绍举, 常琳, 等. 面向手写数字图像的压缩感知快速分类[J]. 光学 精密工程, 2021, 29(7): 1709-1719. doi: 10.37188/OPE.20212907.1709XIAOS M, WANGS J, CHANGL, et al. Compressive sensing fast classification for handwritten digital images[J]. Opt. Precision Eng., 2021, 29(7): 1709-1719.(in Chinese). doi: 10.37188/OPE.20212907.1709
[9] 苗传开, 娄树理, 李婷, 等. 基于弱监督学习的多标签红外图像分类算法[J]. 光学 精密工程, 2022, 30(20): 2501-2509. doi: 10.37188/ope.20223020.2501MIAOC K, LOUS L, LIT, et al. Multi-label infrared image classification algorithm based on weakly supervised learning[J]. Opt. Precision Eng., 2022, 30(20): 2501-2509. (in Chinese). doi: 10.37188/ope.20223020.2501
[10] P CHIKONTWE, S KIM, S H PARK. CAD: Co-Adapting discriminative features for improved Few-Shot classification, 14534-14543(18).
[12] W CHEN, Y GAO, L GAO et al. A new ensemble approach based on deep convolutional neural networks for steel surface defect classification. Procedia CIRP, 72, 1069-1072(2018).
[13] G FU, P SUN, W ZHU et al. A deep-learning-based approach for fast and robust steel surface defects classification. Optics and Lasers in Engineering, 121, 397-405(2019).
[14] I KONOVALENKO, P MARUSCHAK, J BREZINOVÁ et al. Steel surface defect classification using deep residual neural network. Metals, 10, 846(2020).
[15] D HE, K XU, D WANG. Design of multi-scale receptive field convolutional neural network for surface inspection of hot rolled steels. Image and Vision Computing, 89, 12-20(2019).
[16] M HASELMANN, D GRUBER. Supervised machine learning based surface inspection by synthetizing artificial defects, 390-395(18).
[17] Z LIU, Y T LIN, Y CAO et al. Swin transformer: hierarchical vision transformer using shifted windows, 9992-10002(10).
[20] F CHOLLET. Xception: deep learning with depthwise separable convolutions, 1800-1807(21).
[22] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(27).
[23] G HUANG, Z LIU, L VAN DER MAATEN et al. Densely connected convolutional networks, 2261-2269(21).
[26] Z LIU, H Z MAO, C Y WU et al. A ConvNet for the 2020s, 11966-11976(18).
[27] S DEBNATH, R H HU et al. ConvNeXt V2: Co-Designing and scaling convnets with masked autoencoders, 16133-16142(17).
[28] Y X FANG, W WANG, B H XIE et al. EVA: exploring the limits of masked visual representation learning at scale, 19358-19369(17).