• Optics and Precision Engineering
  • Vol. 31, Issue 22, 3357 (2023)
Yan XIA1, Chen LUO1,*, Yijun ZHOU1, and Lei JIA2
Author Affiliations
  • 1School of Mechanical Engineering, Southeast University, Nanjing289, China
  • 2Wuxi Shangshi-finevision Technology Co., Ltd, Wuxi14174, China
  • show less
    DOI: 10.37188/OPE.20233122.3357 Cite this Article
    Yan XIA, Chen LUO, Yijun ZHOU, Lei JIA. A lightweight deep learning model for TFT-LCD circuits defect classification based on swin transformer[J]. Optics and Precision Engineering, 2023, 31(22): 3357 Copy Citation Text show less
    Architecture of Swin-T model
    Fig. 1. Architecture of Swin-T model
    Architecture of Swin Transformer Block
    Fig. 2. Architecture of Swin Transformer Block
    Token merging module
    Fig. 3. Token merging module
    Token merging for visualization
    Fig. 4. Token merging for visualization
    Conventional convolution and depthwise separable convolution
    Fig. 5. Conventional convolution and depthwise separable convolution
    Knowledge distillation flow
    Fig. 6. Knowledge distillation flow
    Loss curve
    Fig. 7. Loss curve
    Different effect of the parameters T on the model accuracy
    Fig. 8. Different effect of the parameters T on the model accuracy
    Different effect of the parameters α on the model accuracy at T=3
    Fig. 9. Different effect of the parameters α on the model accuracy at T=3
    Comparison of detection performance between ResNet-34 model and the improved model
    Fig. 10. Comparison of detection performance between ResNet-34 model and the improved model
    Detection results of the modified model
    Fig. 11. Detection results of the modified model
    nTop-1 AccFLOPs/Gi/(m·s-1
    094.017.551.42
    192.116.354.49
    290.614.761.92
    Table 1. Results of parameter n affects experiments
    ModelTop-1 Acc/%PrecisionRecallF1FLOPs/Gi/(m·s-1
    Swin-T94.00.935 40.935 60.935 517.551.42
    +Token merging90.60.900 20.901 80.901 014.761.92
    +DW91.20.913 80.891 30.902 414.960.43
    +KD92.70.916 50.905 60.911 014.960.43
    Table 2. Results of ablation experiments
    ModelTop-1 Acc/%FLOPs/Gi/(m·s-1
    Resnet-3487.414.668.97
    DenseNet16991.113.732.72
    EffecientNet-v290.611.628.57
    MobileViT-v290.59.873.95
    ConvNext-T95.117.850.36
    EVA0295.887.510.62
    Ours92.714.960.43
    Table 3. Results of comparison experiments
    ModelSizeTop-1 Acc/%Params/MFLOPs/G
    EVA-G/1433689.51013.01445.56
    ViT-H/1433688.6632.46363.64
    ConvNext-XL38487.7350.20179.03
    Swin-L38487.1196.74100.28
    ResNet-101d32083.044.5723.82
    MobileViT-v238482.914.2512.35
    EffecientNet-v228882.213.658.16
    Ours38483.327.5013.89
    Table 4. Results of comparison experiments on public dataset
    Yan XIA, Chen LUO, Yijun ZHOU, Lei JIA. A lightweight deep learning model for TFT-LCD circuits defect classification based on swin transformer[J]. Optics and Precision Engineering, 2023, 31(22): 3357
    Download Citation