• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071611 (2020)
Mengyao Cheng, Yanmin Duan*, Yinglu Sun, Li Zhang, and Haiyong Zhu**
Author Affiliations
  • Institute of Laser and Optoelectronic Technology, Wenzhou University, Wenzhou, Zhejiang 325035, China
  • show less
    DOI: 10.3788/LOP57.071611 Cite this Article Set citation alerts
    Mengyao Cheng, Yanmin Duan, Yinglu Sun, Li Zhang, Haiyong Zhu. Research Progress of Raman and Frequency Mixing for Visible Lasers Based on Vanadate Crystals[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071611 Copy Citation Text show less
    References

    [1] Kaminskii A A, Ueda K I, Eichler H J et al. Tetragonal vanadates YVO4 and GdVO4-new efficient χ(3)-materials for Raman lasers[J]. Optics Communications, 194, 201-206(2001).

    [2] Chen Y F. Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd∶GdVO4 laser[J]. Applied Physics B, 78, 685-687(2004).

    [3] Chen Y F. Efficient subnanosecond diode-pumped passively Q-switched Nd∶YVO4 self-stimulated Raman laser[J]. Optics Letters, 29, 1251-1253(2004).

    [4] Su K W, Chang Y T, Chen Y F. Power scale-up of the diode-pumped actively Q-switched Nd∶YVO4 Raman laser with an undoped YVO4 crystal as a Raman shifter[J]. Applied Physics B, 88, 47-50(2007).

    [5] Pask H M, Dekker P, Mildren R P et al. Wavelength-versatile visible and UV sources based on crystalline Raman lasers[J]. Progress in Quantum Electronics, 32, 121-158(2008).

    [6] Liu B. The researches on yellow light generated by Frequency doubling of the Raman laser[D]. Jinan: Shandong University, 20(2007).

    [7] Ren X K, Xie J, Ruan S C et al. ZnWO4/Nd∶YAG second-order Raman laser at 1318 nm[J]. Acta Optica Sinica, 40, 0536001(2020).

    [8] Basiev T T, Sobol A A, Voronko Y K et al. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers[J]. Optical Materials, 15, 205-216(2000).

    [9] Piper J A, Pask H M. Crystalline Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 692-704(2007).

    [10] Jin T, Hu M, Li P et al. Experimental study of the dual-frequency laser based on the Nd∶YVO4/Nd∶GdVO4 combined crystal[J]. Laser & Optoelectronics Progress, 55, 091407(2018).

    [11] Koechner W, Koechner W[M]. 固体激光工程, 356-365(2002).

         [M]. Solid-state laser engineering, 356-365(2002).

    [12] Yoneda H, Zhang J, Tang D Y et al. Impulsive stimulated Raman scattering in tetragonal GdVO4 single crystal: many-phonon Stokes and cross-cascaded lasing[J]. Laser Physics Letters, 12, 085801(2015).

    [13] Kaminskii A A, Eichler H J, Rhee H et al. New manifestations of nonlinear χ(3)-laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency “tripling”, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping[J]. Laser Physics Letters, 5, 804-811(2008).

    [14] Liu F Q. The researches on characteristics of crystal and performance of diode-pumped Nd∶LuVO4 lasers[D]. Jinan: Shandong University, 5(2007).

    [15] Kaminskii A A, Bettinelli M, Dong J et al. Nanosecond Nd 3+∶LuVO4 self-Raman laser[J]. Laser Physics Letters, 6, 374-379(2009).

    [16] Zhu H Y, Guo J H, Ruan X K et al. Cascaded self-Raman laser emitting around 1.2-1.3 μm based on a c-cut Nd∶YVO4 crystal[J]. IEEE Photonics Journal, 9, 1500807(2017).

    [17] Cai W Y, Duan Y M, Li J T et al. Diode-pumped c-cut Nd∶Lu0.99La0.01VO4 self-stimulated Raman laser at 1181 nm[J]. Chinese Physics Letters, 32, 034206(2015).

    [18] Bai R X, Lin H F, Zhang L Z et al. Actively Q-switched intracavity Nd∶YAG/m-LaVO4 Raman laser[J]. Chinese Journal of Lasers, 45, 0901003(2018).

    [19] Zhu H Y, Duan Y M, Zhang G et al. Efficient continuous-wave YVO4/Nd∶YVO4 Raman laser at 1176 nm[J]. Applied Physics B, 103, 559-562(2011).

    [20] Ding S H, Wang M Q, Wang S W et al. Investigation on LD end-pumped passively Q-switched c-cut Nd∶YVO4 self-Raman laser[J]. Optics Express, 21, 13052-13061(2013).

    [21] Duan Y M, Zhang J, Zhu H Y et al. Compact passively Q-switched RbTiOPO4 cascaded Raman operation[J]. Optics Letters, 43, 4550-4553(2018).

    [22] Zhu H Y, Duan Y M, Zhang G et al. Efficient second harmonic generation of double-end diffusion-bonded Nd∶YVO4 self-Raman laser producing 79 W yellow light[J]. Optics Express, 17, 21544-21550(2009).

    [23] Kravtsov N V, Naumkin N I. Mode self-locking in stimulated Raman emission[J]. Soviet Journal of Quantum Electronics, 9, 223-224(1979).

    [24] Lisinetskii V A, Busko D N, Chulkov R V et al. Self-mode locking at multiple Stokes generation in the Raman laser[J]. Optics Communications, 283, 1454-1458(2010).

    [25] Ding S H, Zhang X Y, Wang Q P et al. Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method[J]. Physical Review A, 76, 053830(2007).

    [26] Jiang P B, Zhang G Z, Liu J et al. 16.7 W 885 nm diode-side-pumped actively Q-switched Nd∶YAG/YVO4 intracavity Raman laser at 1176 nm[J]. Journal of Physics D: Applied Physics, 50, 465303(2017).

    [27] Liu J, Ding X, Jiang P B et al. 103-W actively Q-switched Nd∶YVO4/YVO4 folded coupled-cavity Raman laser at 1176 nm[J]. Applied Optics, 57, 3154-3158(2018).

    [28] Zhou Q Q, Shi S C, Chen S M et al. First-Stokes wavelengths at 1175.8 and 1177.1 nm generated in a diode end-pumped Nd∶YVO4 /LuVO4 Raman laser[J]. Chinese Physics Letters, 36, 014205(2019).

    [29] Zhu H Y, Zhang G, Duan Y M et al. Compact continuous-wave Nd∶YVO4 laser with self-Raman conversion and sum frequency generation[J]. Chinese Physics Letters, 28, 054202(2011).

    [30] Kores C C, Jakutis-Neto J, Geskus D et al. Diode-side-pumped continuous wave Nd 3+∶YVO4 self-Raman laser at 1176 nm[J]. Optics Letters, 40, 3524-3527(2015).

    [31] Li L, Liu Z J, Zhang X Y et al. Characteristics of the temperature-tunable Nd∶YAG/YVO4 Raman laser[J]. Optics Letters, 37, 2637-2639(2012).

    [32] Du C L, Zhang L, Yu Y Q et al. 3.1 W laser-diode-end-pumped composite Nd∶YVO4 self-Raman laser at 1176 nm[J]. Applied Physics B, 101, 743-746(2010).

    [33] Fan L, Fan Y X, Wang H T. A compact efficient continuous-wave self-frequency Raman laser with a compositeYVO4/Nd∶YVO4/YVO4 crystal[J]. Applied Physics B, 101, 493-496(2010).

    [34] Chen M T, Dai S B, Zhu S Q et al. Multi-watt passively Q-switched self-Raman laser based on a c-cut Nd∶YVO4 composite crystal[J]. Journal of the Optical Society of America B, 36, 524-532(2019).

    [35] Lee A J, Lin J P, Pask H M. Near-infrared and orange-red emission from a continuous-wave, second-Stokes self-Raman Nd∶GdVO4 laser[J]. Optics Letters, 35, 3000-3002(2010).

    [36] Chen W D, Wei Y, Huang C H et al. Second-Stokes YVO4/Nd∶YVO4/YVO4 self-frequency Raman laser[J]. Optics Letters, 37, 1968-1970(2012).

    [37] Du C L, Huang G X, Yu Y Q et al. Q-switched mode-locking of second-Stokes pulses in a diode-pumped YVO4/Nd∶YVO4/YVO4 self-Raman laser[J]. Laser Physics, 24, 125003(2014).

    [38] Guo J H, Zhu H Y, Duan Y M et al. Cascaded c-cut Nd∶YVO4 self-Raman laser operation with a single 259 cm -1 shift[J]. Journal of Optics, 19, 035501(2017).

    [39] Xie Z, Duan Y M, Guo J H et al. Cascaded a-cut Nd∶YVO4 self-Raman with second-Stokes laser at 1313 nm[J]. Journal of Optics, 19, 115501(2017).

    [40] Zhang X M, Chen S M, Shi S C et al. Study on the performance of cascaded Nd∶GdVO4 self-Raman laser at 1309 nm[J]. Infrared and Laser Engineering, 48, 47-51(2019).

    [41] Liu J, Ding X, Jiang P B et al. High-performance second-Stokes generation of a Nd∶YVO4/YVO4 Raman laser based on a folded coupled cavity[J]. Optics Express, 26, 10171-10178(2018).

    [42] Gao Z H, Zhang W X, Guo X L et al. Single-frequency green laser based on birefringent filter comprising a wedge Nd∶YVO4/KTP[J]. Chinese Journal of Lasers, 47, 0301011(2020).

    [43] Dekker P, Pask H M, Spence D J et al. Continuous-wave, intracavity doubled, self-Raman laser operation in Nd∶GdVO4 at 586.5 nm[J]. Optics Express, 15, 7038-7046(2007).

    [44] Lee A J, Pask H M, Omatsu T et al. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action[J]. Applied Physics B, 88, 539-544(2007).

    [45] Lee A J, Pask H M, Dekker P et al. High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd∶GdVO4[J]. Optics Express, 16, 21958-21963(2008).

    [46] Lü Y, Zhang X H, Li S T et al. All-solid-state cw sodium D_2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd 3+∶LuVO4 crystal[J]. Optics Letters, 35, 2964-2966(2010).

    [47] Lü Y F, Cheng W B, Xiong Z et al. Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd∶YVO4 laser under direct 880 nm diode laser pumping[J]. Laser Physics Letters, 7, 787-789(2010).

    [48] Lee A J, Pask H M, Spence D J et al. Efficient 53 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd∶GdVO4 laser[J]. Optics Letters, 35, 682-684(2010).

    [49] Li X L, Lee A J, Pask H M et al. Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd∶YVO4 self-Raman laser[J]. Optics Letters, 36, 1428-1430(2011).

    [50] Tan Y, Fu X H, Zhai P et al. An efficient cw laser at 560 nm by intracavity sum-frequency mixing in a self-Raman Nd∶LuVO4 laser[J]. Laser Physics, 23, 045806(2013).

    [51] Lee A J, Zhang C Y, Omatsu T et al. An intracavity, frequency-doubled self-Raman vortex laser[J]. Optics Express, 22, 5400-5409(2014).

    [52] Li X L, Pask H M, Lee A J et al. Miniature wavelength-selectable Raman laser: new insights for optimizing performance[J]. Optics Express, 19, 25623-25631(2011).

    [53] Lin J P, Pask H M, Lee A J et al. Study of amplitude noise in a continuous-wave intracavity frequency-doubled Raman laser[J]. IEEE Journal of Quantum Electronics, 47, 314-319(2011).

    [54] Wang B S, Tan H M, Peng J Y et al. Low threshold, actively Q-switched Nd 3+∶YVO4 self-Raman laser and frequency doubled 588 nm yellow laser[J]. Optics Communications, 271, 555-558(2007).

    [55] Omatsu T, Lee A, Pask H M et al. Passively Q-switched yellow laser formed by a self-Raman composite Nd∶YVO4/YVO4 crystal[J]. Applied Physics B, 97, 799-804(2009).

    [56] Duan Y M, Zhu H Y, Huang C H et al. Potential sodium D_2 resonance radiation generated by intra-cavity SHG of a c-cut Nd∶YVO4 self-Raman laser[J]. Optics Express, 19, 6333-6338(2011).

    [57] Duan Y M, Zhang G, Zhang Y J et al. LD end-pumped c-Cut Nd∶YVO4/KTP self-Raman laser at 560 nm[J]. Laser Physics, 21, 1859-1862(2011).

    [58] Duan Y M, Zhu H Y, Feng Z R et al. Laser diode end-pumped Nd∶YVO4 self-Raman laser at 559 nm with sum-frequency mixing[J]. Chinese Journal of Lasers, 40, 0502002(2013).

    [59] Su F F, Zhang X Y, Wang W T et al. Diode-pumped intracavity yellow-green Raman laser at 560 nm with sum-frequency-generation[J]. Optics & Laser Technology, 66, 122-124(2015).

    [60] Chang Y T, Chang H L, Su K W et al. High-efficiency Q-switched dual-wavelength emission at 1176 and 559 nm with intracavity Raman and sum-frequency generation[J]. Optics Express, 17, 11892-11897(2009).

    [61] Zhu H Y, Duan Y M, Zhang G et al. Yellow-light generation of 57 W by intracavity doubling self-Raman laser of YVO4/Nd∶YVO4 composite[J]. Optics Letters, 34, 2763-2765(2009).

    [62] Du C L, Guo Y Y, Yu Y Q et al. High power Q-switched intracavity sum-frequency generation and self-Raman laser at 559 nm[J]. Optics & Laser Technology, 47, 43-46(2013).

    [63] Mildren R P, Pask H M, Ogilvy H et al. Discretely tunable, all-solid-state laser in the green, yellow, and red[J]. Optics Letters, 30, 1500-1502(2005).

    [64] Pask H M, Mildren R P, Piper J A. Optical field dynamics in a wavelength-versatile, all-solid-state intracavity cascaded pulsed Raman laser[J]. Applied Physics B, 93, 507-513(2008).

    [65] Lee A J, Spence D J, Piper J A et al. A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible[J]. Optics Express, 18, 20013-20018(2010).

    [66] Spence D J, Li X L, Lee A J et al. Modeling of wavelength-selectable visible Raman lasers[J]. Optics Communications, 285, 3849-3854(2012).

    [67] Li X L. Multiwavelength visible laser based on the stimulated Raman scattering effect and beta Barium borate angle tuning[J]. Chinese Optics Letters, 14, 021404(2016).

    [68] Chen Y F, Liu Y C, Pan Y Y et al. Efficient high-power dual-wavelength lime-green Nd∶YVO4 lasers[J]. Optics Letters, 44, 1323-1326(2019).

    [69] Chen Y F, Pan Y Y, Liu Y C et al. Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd∶YVO4 self-Raman crystal[J]. Optics Express, 27, 2029-2035(2019).

    [70] Yue Y, Ding H, Chen C et al. 3D self-assembly technique applied to manufacturing microsphere whispering gallery mode laser[J]. Proceedings of SPIE, 11209, 112091P(2019).

    [71] Guo J, Zhu H Y, Chen S M et al. Yellow, lime and green emission selectable by BBO angle tuning in Q-switched Nd∶YVO4 self-Raman laser[J]. Laser Physics Letters, 15, 075803(2018).

    [72] Chen S M, Cheng M Y, Zhu H Y et al. Orange, yellow and green emissions generated in Q-switched Nd∶YALO3/YVO4 Raman laser[J]. Journal of Luminescence, 214, 116555(2019).

    [73] Mao T W, Duan Y M, Chen S M et al. Yellow and orange light selectable output generated by Nd∶YAP/YVO4/LBO Raman laser[J]. IEEE Photonics Technology Letters, 31, 1112-1115(2019).

    [74] Runcorn T H, Gorlitz F G, Murray R T et al. Visible Raman-shifted fiber lasers for biophotonic applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-8(2018).

    [75] Staples G, Wu H. Qian J et al. Multi-wavelength excitation in Raman spectroscopy[J]. Laser Focus World, 51, 61-63(2015).

    [76] Xia D Q, Li Z J, Lü T. Equipment to cure retinopathy with three-colour laser[J]. Laser & Optoelectronics Progress, 48, 061701(2011).

    [77] Liu W L, Zhou C Q, Ren Q S. Solid-state multi-wavelength lasers equipment for retina treatment[J]. Chinese Journal of Medical Instrumentation, 36, 326-328(2012).

    [78] Bai J T, Chen X Y, Gu Y et al. Medical application of new solid-state multi-wavelength laser[J]. Laser & Optoelectronics Progress, 46, 65-67(2009).

    Mengyao Cheng, Yanmin Duan, Yinglu Sun, Li Zhang, Haiyong Zhu. Research Progress of Raman and Frequency Mixing for Visible Lasers Based on Vanadate Crystals[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071611
    Download Citation