• Laser & Optoelectronics Progress
  • Vol. 56, Issue 19, 190006 (2019)
Zhaoyu Zhu, Changjun Chen*, and Min Zhang
Author Affiliations
  • Laser Processing Research Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • show less
    DOI: 10.3788/LOP56.190006 Cite this Article Set citation alerts
    Zhaoyu Zhu, Changjun Chen, Min Zhang. Research Progress and Prospect of Laser Additive Manufacturing Technique for Magnesium Alloy[J]. Laser & Optoelectronics Progress, 2019, 56(19): 190006 Copy Citation Text show less
    References

    [1] Gupta M. Sharon N M L. Magnesium, magnesium alloys, and magnesium composites[M]. Hoboken: John Wiley & Sons, Inc., 4-21(2010).

    [2] Mordike B L, Ebert T. Magnesium: properties-applications-potential[J]. Materials Science and Engineering: A, 302, 37-45(2001).

    [3] Froes F H, Eliezer D, Aghion E. The science, technology, and applications of magnesium[J]. JOM, 50, 30-34(1998).

    [4] Song G L, Atrens A. Corrosion mechanisms of magnesium alloys[J]. Advanced Engineering Materials, 1, 11-33(1999).

    [5] Shi W F, Zhou K[J]. The application and outlook of magnesium alloy development in China Automobile Technology & Material, 2004, 32-37.

    [6] Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials[J]. Acta Metallurgica Sinica, 53, 257-297(2017).

    [7] Taltavull C, Shi Z, Torres B et al. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution[J]. Journal of Materials Science: Materials in Medicine, 25, 329-345(2014).

    [8] Gehrmann R, Frommert M M, Gottstein G. Texture effects on plastic deformation of magnesium[J]. Materials Science and Engineering: A, 395, 338-349(2005).

    [9] Singh S, Ramakrishna S, Singh R. Material issues in additive manufacturing:a review[J]. Journal of Manufacturing Processes, 25, 185-200(2017).

    [10] Lee H. Lim C H J, Low M J, et al. Lasers in additive manufacturing: a review[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 307-322(2017).

    [11] Zhang L C, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review[J]. Advanced Engineering Materials, 18, 463-475(2016).

    [12] Lu Z L, Cao J W, Jing H et al. Review of main manufacturing processes of complex hollow turbine blades[J]. Virtual and Physical Prototyping, 8, 87-95(2013).

    [13] Oyagüe R C, Sánchez-Turrión A. López-Lozano J F, et al. Evaluation of fit of cement-retained implant-supported 3-unit structures fabricated with direct metal laser sintering and vacuum casting techniques[J]. Odontology, 100, 249-253(2012).

    [14] Wen S F, Ji X T, Zhou Y et al. Development status and prospect of selective laser melting of mould steels[J]. Laser & Optoelectronics Progress, 55, 011404(2018).

    [15] Liu J, Wang W X, Cheng X et al. Oxidation behaviors of Ti60A titanium alloy processed by laser additive manufacturing[J]. Chinese Journal of Lasers, 45, 0702007(2018).

    [16] Wang H F, Tian X J, Cheng X et al. Effects of thermal deformation conditions on microstructures and deformation behaviors of laser additive manufactured TC18 titanium alloys[J]. Chinese Journal of Lasers, 45, 0302008(2018).

    [17] Zhang M, Chen C J, Huang Y. Laser additive manufacturing foam aluminium-12 wt-% silicon with different addition TiH2 foaming agent[J]. Materials Science and Technology, 34, 968-981(2018).

    [18] Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 63, 856-867(2014).

    [19] Xie Y J, Yang H C, Wang X B et al. Effects of laser parameters and scanning strategy on the forming properties of selective laser melting TC11 alloy[J]. Powder Metallurgy Industry, 28, 18-24(2018).

    [20] Wei K W, Gao M, Wang Z M et al. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy[J]. Materials Science and Engineering: A, 611, 212-222(2014).

    [21] Ng C C, Savalani M M, Lau M L et al. Microstructure and mechanical properties of selective laser melted magnesium[J]. Applied Surface Science, 257, 7447-7454(2011).

    [22] Zhang B C, Liao H L, Coddet C. Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture[J]. Materials & Design, 34, 753-758(2012).

    [23] Liu C, Zhang M, Chen C J. Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing[J]. Materials Science and Engineering: A, 703, 359-371(2017).

    [24] Shuai C J, Yang Y W, Wu P et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy[J]. Journal of Alloys and Compounds, 691, 961-969(2017).

    [25] Savalani M M, Pizarro J M. Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium[J]. Rapid Prototyping Journal, 22, 115-122(2016).

    [26] Gai G S, Yang Y F, Jin L et al. Particle shape modification and related property improvements[J]. Powder Technology, 183, 115-121(2008).

    [27] Froes F H, Mashl S J, Hebeisen J C et al. The technologies of titanium powder metallurgy[J]. JOM, 56, 46-48(2004).

    [28] Niu H J. Chang I T H. Selective laser sintering of gas and water atomized high speed steel powders[J]. Scripta Materialia, 41, 25-30(1999).

    [29] Kumar S. Selective laser sintering/melting[M]. //Hashmi S, Batalha G F, van Tyne C J, et al. Comprehensive materials processing: advances in additive manufacturing and tooling. Amsterdam: Elsevier, 93-134(2014).

    [30] Gu D D, Shen Y F. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder[J]. Journal of Alloys and Compounds, 432, 163-166(2007).

    [31] Tian J, Huang Z H, Qi W J et al. Research progress on selective laser melting of metal[J]. Materials Review, 31, 90-94, 101(2017).

    [32] Gu D, Meiners W, Wissenbach K et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 57, 133-164(2012).

    [33] Attar H, Prashanth K G, Zhang L C et al. Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting[J]. Journal of Materials Science & Technology, 31, 1001-1005(2015).

    [34] Hu D, Wang Y, Zhang D F et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium[J]. Materials and Manufacturing Processes, 30, 1298-1304(2015).

    [35] Thijs L, Verhaeghe F, Craeghs T et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 58, 3303-3312(2010).

    [36] Zhang M, Chen C J, Liu C et al. Study on porous Mg-Zn-Zr ZK61 alloys produced by laser additive manufacturing[J]. Metals, 8, 635(2018).

    [37] Liu X Y. Research of AZ91 magnesium alloy strengthening technology[D]. Jinan: University of Jinan(2015).

    [38] Wei K W, Wang Z M, Zeng X Y. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components[J]. Materials Letters, 156, 187-190(2015).

    [39] Wei K W, Wang Z M, Zeng X Y. Element loss of AZ91D magnesium alloy during selective laser melting process[J]. Acta Metallurgica Sinica, 52, 184-190(2016).

    [40] Block-Bolten A, Eagar T W. Metal vaporization from weld pools[J]. Metallurgical Transactions B, 15, 461-469(1984).

    [41] Parande G, Manakari V, Meenashisundaram G K et al. Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates[J]. International Journal of Materials Research, 107, 1091-1099(2016).

    [42] Ng C C, Savalani M M, Lau M L et al. Microstructure and mechanical properties of selective laser melted magnesium[J]. Applied Surface Science, 257, 7447-7454(2011).

    [43] Steen W M. Laser material processing: an overview[J]. Journal of Optics A:Pure and Applied Optics, 5, S3-S7(2003).

    [44] Wang X Q, Gong X B, Chou K. Review on powder-bed laser additive manufacturing of Inconel 718 parts[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231, 1890-1903(2017).

    [45] Hitzler L, Janousch C, Schanz J et al. Direction and location dependency of selective laser melted AlSi10Mg specimens[J]. Journal of Materials Processing Technology, 243, 48-61(2017).

    [46] Chen D N, Liu T T, Liao W H et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 43, 0403003(2016).

    [47] Hussein A, Hao L, Yan C Z et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials & Design, 52, 638-647(2013).

    [48] Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 12, 1-15(2016).

    [49] Ng C C, Savalani M, Man H C. Fabrication of magnesium using selective laser melting technique[J]. Rapid Prototyping Journal, 17, 479-490(2011).

    [50] Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 12, 254-265(2006).

    [51] Wu G H, Chen Y S, Ding W J. Current research, application and future prospect of magnesium alloys in aerospace industry[J]. Manned Spaceflight, 22, 281-292(2016).

    [52] Kamrani S, Fleck C. Biodegradable magnesium alloys as temporary orthopaedic implants: a review[J]. BioMetals, 32, 185-193(2019).

    [53] Yin L, Huang H, Yuan G Y et al. Latest research progress of biodegradable magnesium alloys in clinical applications[J]. Materials China, 38, 126-137(2019).

    [54] Windhagen H, Radtke K, Weizbauer A et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study[J]. BioMedical Engineering OnLine, 12, 62(2013).

    [55] Zardiackas L D, Parsell D E, Dillon L D et al. Structure, metallurgy, and mechanical properties of a porous tantalum foam[J]. Journal of Biomedical Materials Research, 58, 180-187(2001).

    [56] Yan C Z, Hao L, Hussein A et al. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting[J]. Materials & Design, 55, 533-541(2014).

    [57] Attar H, Löber L, Funk A et al. Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting[J]. Materials Science and Engineering: A, 625, 350-356(2015).

    Zhaoyu Zhu, Changjun Chen, Min Zhang. Research Progress and Prospect of Laser Additive Manufacturing Technique for Magnesium Alloy[J]. Laser & Optoelectronics Progress, 2019, 56(19): 190006
    Download Citation