• Infrared and Laser Engineering
  • Vol. 49, Issue 2, 214003 (2020)
Li Sheng, Fan Bin, Wang Weigang, and Li Kang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla202049.0214003 Cite this Article
    Li Sheng, Fan Bin, Wang Weigang, Li Kang. Comparison of back supporting structure and side supporting structure of space mirror manufactured by silicon carbide in cryogenic environment[J]. Infrared and Laser Engineering, 2020, 49(2): 214003 Copy Citation Text show less
    References

    [1] Marco Barbera, Teresa Mineo, Stefano Basso, et al. The mirror module design for the cryogenic X-ray imaging spectrometer on board ORIGIN[C]//SPIE, 2011, 8076: 80760A.

    [2] Laura E Coyle, Taylor S Chonis, Koby Z Smith, et al. Optical assessment of the James Webb Space telescope primary and secondary mirror cryogenic alignment with a Hartmann test[C]//SPIE, 2018, 10706: 107061Q.

    [3] Derek J Edinger, Paul V Mammini, Anantha Rao. Cryogenic mirror mounts for use on JWST's NIRCam instrument[C]//SPIE, 2005, 5904: 59040A.

    [4] Brian E Catanzaro, Steven J Connell, Mark Mimovich, et al. Cryogenic (70 K) measurement of an all-composite 2-m-diameter mirror[C]//SPIE, 2001, 4444: 238-257.

    [5] Zeng Yongqian, Fu Danying, Sun Jiwen, et al. Summary of support structure patterns of large mirror for space remote sensor[J]. Spacecraft Recovery and Remote Sensing, 2006, 27(2): 18-22. (in Chinese).

    [6] Guo Jiang, He Xi. Design of support for primary mirror of space remote sensing camera[J]. Optics and Precision Engineering, 2008, 16(9): 1642-1647. (in Chinese)

    [7] Kihm H, Yang H S. Design optimization of a 1-m lightweight mirror for a space telescope[J]. Optical Engineering, 2013, 52(9): 72-72.

    [8] Wu Qingwen, Tao Jiasheng, Song Zhaohui. Multi-point support pattern of a high precision lightweight rectangular mirror[J]. Optics and Precision Engineering, 1999, 7(6): 61-65. (in Chinese)

    [9] Kihm H, Yang H S, Moon I K, et al. Adjustable bipod flexures for mounting mirrors in a space telescope[J]. Applied Optics, 2012, 51(32): 7776-7783.

    [10] Zhang Bowen, Wang Xiaoyong, Zhao Ye, et al. Porgress on support technique of space-based large aperture mirror[J]. Infrared and Laser Engineering, 2018, 47(11): 1113001. (in Chinese)

    [11] Liu Tao, Zhou Yiming, Jiang Yuesong. Research and application of foreign space mirror material[J]. Spacecraft Recovery and Remote Sensing, 2013, 34(5): 90-99. (in Chinese)

    [12] Peter A Jones, Donald A Gildner. Cryogenic performance of a passive lightweight mirror[C]//SPIE, 1998, 3356: 883-891.

    [13] Kenneth J Triebes, Lynn W Huff, Charles D Cox, et al. Cryogenic optical performance of a lightweighted 20-inch SiC mirror and indications for thermal strain homogeneity and hysteresis[C]//SPIE, 1995, 2543: 213-218.

    [14] Takashi Onaka, Hidehiro Kaneda, Mitsunobu Kawada, et al. Cryogenic silicon carbide mirrors for infrared astronomical telescopes: lessons learnt from AKARI for SPICA[C]//SPIE, 2013, 8837: 88370K.

    [15] Ron Eng, James R. Carpenter, et al. Cryogenic performance of a lightweight silicon carbide mirror[C]//SPIE, 2005, 5868: 58680Q.

    [16] James B Hadaway, Ron Eng, H Philip Stahl, et al. Cryogenic performance of lightweight SiC and C/SiC mirrors[C]//SPIE, 2004, 5487: 1019-1029.

    [17] Christopher Chrzanowski, Charles Frohlich, Badri Shirgur, et al. Design and structural/optical analysis of a kinematic mount for the testing of silicon carbide mirrors at cryogenic temperatures[C]//SPIE, 2004, 5528: 204-214.

    [18] Hidehiro Kaneda, Masataka Naitoh, Tadashi Imai, et al. Cryogenic optical testing of an 800 mm lightweight C/SiC composite mirror mounted on a C/SiC optical bench[J]. Applied Optics, 2010, 49: 3941-3948.

    [19] Hidehiro Kaneda, Takao Nakagawa, Takashi Onaka, et al. Cryogenic optical measurements of 12-segmentbonded carbon-fiber-reinforced silicon carbide composite mirror with support mechanism[J]. Applied Optics, 2008, 47: 1122-1128.

    [20] Hidehiro Kaneda, Takashi Onaka, Mitsunobu Kawada, et al. Cryogenic optical testing of sandwich-type silicon carbide mirrors[J]. Applied Optics, 2003, 42: 708-714.

    [21] Daniel Vukobratovich, Ken Don, Richard E Sumner. Improved cryogenic aluminum mirrors[C]// SPIE, 1998, 3435: 9-18.

    [22] Jan Kinast, Ralph Schlegel, Knut Kleinbauer, et al. Manufacturing of aluminum mirrors for cryogenic applications[C]//SPIE, 2018, 10706: 107063G.

    [23] Kwijong Park, Bongkon Moon, Dae-Hee Lee, et al. Performance analysis for mirrors of 30 cm cryogenic space infrared telescope[J]. Journal of Astronomy and Space Sciences, 2012, 29(3): 321-328.

    [24] Stephen E Kendrick, Robert J Brown, Scott Streetman, et al. Lightweighted beryllium cryogenic mirrors for both monolithic and segmented space telescopes[C]//SPIE, 2003, 4850: 241-253.

    [25] Stephen E Kendrick, Timothy Reed, Scott Streetman, et al. Design and test of semirigid beryllium mirrors for lightweighted space applications: SBMD cryogenic performance update and AMSD design approach[C]// SPIE, 2001, 4198: 221-229.

    [26] Stephanie Behar-Lafenetre, Thierry Lasic, Roger Viale, et al. Highly light-weighted ZERODUR mirror and fixation for cryogenic applications[C]//Sixth International Conference on Space Optics, 2006, 10567: 1056717.

    [27] Yoder P R. Opto-Mechanical Systems Design[M]. 3rd ed. Zhang Haixian, Cheng Yunfang, translated. Beijing: China Machine Press, 2008. (in Chinese)

    Li Sheng, Fan Bin, Wang Weigang, Li Kang. Comparison of back supporting structure and side supporting structure of space mirror manufactured by silicon carbide in cryogenic environment[J]. Infrared and Laser Engineering, 2020, 49(2): 214003
    Download Citation