• Matter and Radiation at Extremes
  • Vol. 2, Issue 2, 55 (2017)
Masakatsu Murakami* and Daiki Nishi
Author Affiliations
  • Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
  • show less
    DOI: 10.1016/j.mre.2016.12.002 Cite this Article
    Masakatsu Murakami, Daiki Nishi. Optimization of laser illumination configuration for directly driven inertial confinement fusion[J]. Matter and Radiation at Extremes, 2017, 2(2): 55 Copy Citation Text show less
    References

    [1] C.A. Haynam, P.J. Wegner, J.M. Auerbach, M.W. Bowers, S.N. Dixit, et al., National Ignition Facility laser performance status, Appl. Opt. 46 (2007) 3276.

    [2] C. Cavailler, N. Fleurot, T. Lonjaret, J.M. Di-Nicola, Prospects and progress at LIL and megajoule, Plasma Phys. Control Fusion 46 (2004) B135.

    [3] J.H. Nuckolls, L. Wood, A. Thiessen, G.B. Zimmermann, Laser compression of matter to super-high densities: Thermonuclear applications, Nature 239 (1972) 139.

    [4] S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Clarendon Press, Oxford, 2004.

    [5] J.D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect-drive, Springer, New York, 1998.

    [6] M. Tabak, J.H. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, et al., Ignition and high gain with ultra powerful lasers, Phys. Plasmas 1 (1994) 1626.

    [7] M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, et al., Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett. 86 (2001) 436.

    [8] M. Murakami, H. Nagatomo, A new twist for inertial fusion energy: Impact ignition, Nucl. Instrum. Methods Phys. Res. Sect. A544 (2005) 67.

    [9] R. Betti, C.D. Zhou, K.S. Anderson, L.J. Perkins, W. Theobald, et al., Shock ignition of thermonuclear fuel with high areal density, Phys. Rev. Lett. 98 (2007) 155001.

    [10] T. Norimatsu, K. Nagai, T. Takeda, K. Mima, T. Yamanaka, Update for the drag force on an injected pellet and target fabrication for inertial fusion, Fusion Sci. Technol. 43 (2003) 339.

    [11] R. Hiwatari, Y. Asaoka, K. Okano, Preliminary consideration on maintenance approach for a fast ignition ICF reactor with a dry wall chamber and a high repetition laser, Fusion Sci. Technol. 52 (2007) 911.

    [12] Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, et al., Random phasing of high-power lasers for uniform target acceleration and plasmainstability suppression, Phys. Rev. Lett. 53 (1984) 1057.

    [13] S. Skupsky, R.W. Short, T. Kessler, R.S. Craxton, S. Letzring, et al., Improved laser-beam uniformity using the angular dispersion of frequency-modulated light, J. Appl. Phys. 66 (1989) 3456.

    [14] R.H. Lehmberg, A.J. Schmitt, S.E. Bodner, Theory of induced spatial incoherence, J. Appl. Phys. 62 (1987) 2680.

    [15] T.R. Boehly, V.A. Smalyuk, D.D. Meyerhofer, J.P. Knauer, D.K. Bradley, et al., Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser, J. Appl. Phys. 85 (1999) 3444.

    [16] S.E. Bodner, Critical elements of high gain laser fusion, J. Fusion Energy 1 (1981) 221.

    [17] S. Fujioka, A. Sunahara, K. Nishihara, N. Ohnishi, T. Johzaki, et al., Suppression of the Rayleigh-Taylor instability due to self-radiation in a multiablation target, Phys. Rev. Lett. 92 (2004) 195001.

    [18] B. Canaud, F. Garaude, Optimization of laser-target coupling efficiency for direct drive laser fusion, Nucl. Fusion 45 (2005) L43.

    [19] R.H. Lehmberg, J. Goldhar, Use of incoherence to produce smooth and controllable irradiation profiles with KRF fusion lasers, Fusion Technol. 11 (1987) 532.

    [20] M. Temporal, B. Canaud, B.J. Le Garrec, Irradiation uniformity and zooming performances for a capsule directly driven by a 329 laser beams configuration, Phys. Plasmas 17 (2010) 022701.

    [21] P. Michel, L. Divol, E.A. Williams, S. Weber, C.A. Thomas, et al., Tuning the implosion symmetry of ICF targets via controlled crossedbeam energy transfer, Phys. Rev. Lett. 102 (2009) 025004.

    [22] P. Michel, S.H. Glenzer, L. Divol, D.K. Bradley, D. Callahan, et al., Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility, Phys. Plasmas 17 (2010) 056305.

    [23] J.D. Moody, P. Michel, L. Divol, R.L. Berger, E. Bond, et al., Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma, Nat. Phys. 8 (2012) 344.

    [24] A. Schmitt, Absolutely uniform illumination of laser fusion pellets, Appl. Phys. Lett. 44 (1984) 399.

    [25] M. Murakami, Irradiation system based on dodecahedron for inertial confinement fusion, Appl. Phys. Lett. 66 (1995) 1587.

    [26] A.I. Ogoyski, S. Kawata, T. Someya, A.B. Blagoev, P.H. Popov, 32-beam irradiation on a spherical heavy ion fusion pellet, J. Phys. D. Appl. Phys. 37 (2004) 2392.

    [27] B. Canaud, F. Garaude, C. Clique, High-gain direct-drive laser fusion with indirect drive beam layout of Laser Megajoule, Nucl. Fusion 47 (2007) 1652.

    [28] J. Runge, B.G. Logan, Nonuniformity for rotated beam illumination in directly driven heavy-ion fusion, Phys. Plasmas 16 (2009) 033109.

    [29] M. Temporal, B. Canaud, Numerical analysis of the irradiation uniformity of a directly driven inertial confinement fusion capsule, Euro. Phys. J. D. 55 (2009) 139.

    [30] M. Temporal, B. Canaud, W.J. Garbett, F. Philippe, R. Ramis, Polar direct drive illumination uniformity provided by the Orion facility, Euro. Phys. J. D. 67 (2013) 205.

    [31] M. Temporal, B. Canaud,W.J. Garbett, F. Philippe, R. Ramis, Overlapping laser profiles used to mitigate the negative effects of beam uncertainties in direct-drive LMJ configurations, Euro. Phys. J. D. 69 (2015) 12.

    [32] C. Yamanaka, Y. Kato, Y. Izawa, K. Yoshida, T. Yamanaka, et al., Nddoped phosphate-glass laser systems for laser-fusion research, IEEE J. Quantum Electron 17 (1981) 1639.

    [33] S. Skupsky, K. Lee, Uniformity of energy deposition for laser driven fusion, J. Appl. Phys. 54 (1983) 3662.

    [34] R.A. Sacks, R.C. Arnold, G.R. Magelssen, Irradiation uniformity of spherical heavy-ion-driven ICF targets, Nucl. Fusion 22 (1982) 1421.

    [35] T.R. Boehly,D.L.Brown, R.S. Craxton, R.L.Keck, J.P.Knauer, et al., Initial performance results of the OMEGA laser system, Opt. Commun. 133 (1997) 495.

    [36] W. Robert, The Geometrical Foundation of Natural Structure, Dover Publications, Inc, 1979, ISBN 0-486-23729-X.

    [37] M. Murakami, N. Sarukura, H. Azechi, M. Temporal, A.J. Schmitt, Optimization of irradiation configuration in laser fusion utilizing selforganizing electrodynamic system, Phys. Plasmas 17 (2010) 082702.

    [38] R.S. Craxton, K.S. Anderson, T.R. Boehly, V.N. Goncharov, D.R. Harding, et al., Direct-drive inertial confinement fusion: A review, Phys. Plasmas 22 (2015) 110501.

    [39] S. Skupsky, J.A. Marozas, R.S. Craxton, R. Betti, T.J.B. Collins, et al., Polar direct drive on the National ignition facility, Plasma Phys. 11 (2004) 2763.

    [40] M. Murakami, K. Nishihara, H. Azechi, Irradiation nonuniformity due to imperfections of laser beams, J. Appl. Phys. 74 (1993) 802.

    [41] M. Murakami, Analysis of radiation symmetrization in hohlraum targets, Nucl. Fusion 32 (1992) 1715.

    [42] K. Lan, J. Liu, D. Lai, W. Zheng, X.-T. He, High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14, Phys. Plasmas 21 (2014) 010704.

    [43] K. Lan, J. Liu, Z. Li, X. Xie, W.Y. Huo, et al., Progress in octahedral spherical hohlraum study, Matter Radiat. Extrem. 1 (2016) 8.

    [44] M. Murakami, J. Meyer-ter-Vehn, Radiation symmetrization in indirectly driven ICF targets, Nucl. Fusion 31 (1991) 1333.

    [45] J. Xiao, B. Lu, Conditions for perfectly uniform irradiation of spherical laser fusion targets, J. Opt. 29 (1998) 282.

    [46] M. Murakami, Design of a conic irradiation system for laser fusion, Fusion Eng. Des. 44 (1999) 111.

    [47] W.L. Kruer, The Physics of Laser Plasma Interactions, Westview Press, 2003, ISBN 0-8133-4083-7.

    Masakatsu Murakami, Daiki Nishi. Optimization of laser illumination configuration for directly driven inertial confinement fusion[J]. Matter and Radiation at Extremes, 2017, 2(2): 55
    Download Citation