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Abstract

Optimum laser configurations are presented to achieve high illumination uniformity with directly driven inertial confinement fusion targets.
Assuming axisymmetric absorption pattern of individual laser beams, theoretical models are reviewed in terms of the number of laser beams,
system imperfection, and laser beam patterns. Utilizing a self-organizing system of charged particles on a sphere, a simple numerical model is
provided to give an optimal configuration for an arbitrary number of laser beams. As a result, such new configurations as “M48” and “M60” are
found to show substantially higher illumination uniformity than any other existing direct drive systems. A new polar direct-drive scheme is
proposed with the laser axes keeping off the target center, which can be applied to laser configurations designed for indirectly driven inertial
fusion.
Copyright © 2016 Science and Technology Information Center, China Academy of Engineering Physics. Production and hosting by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

To achieve ignition and burn in inertial confinement fusion
(ICF), a principal requirement is to illuminate a fusion pellet
as uniformly as possible with a limited number of laser beams.
The world's two largest laser fusion facilities, the US National
Ignition Facility (NIF) [1] and the French Laser M�egajoule
(LMJ) [2], are expected to achieve laboratory ignition based
on the central spark ignition [3,4] in terms of the indirect-drive
scheme, in which laser beams irradiate a high-Z casing sur-
rounding a fuel pellet to produce thermal radiation [5]. This
secondary thermal radiation can drive a spherically uniform
implosion of the pellet, but at the price of low energy
coupling. In contrast, in direct drive, as the counter scheme to

the indirect-drive, laser beams directly illuminate a spherical
pellet, also pursuing fast ignition driven by hot-electrons [6]
and protons [7], impact ignition [8], or shock ignition [9] as
well as the central spark ignition. In either case, uniform
illumination of a fuel pellet is always a central issue in ICF
and dominates in the target and reactor designs [10,11].

The implosion nonuniformity can be decomposed into factors
of various harmonic modes. High-mode nonuniformities
potentially drive RayleigheTaylor (ReT) instabilities. It is ex-
pected that the ReT instabilities are suppressed to a tolerable
level by means of beam-smoothing techniques [12e15] and also
physical mechanisms such as electron- and radiation-conduction
[16,17]. Zooming techniques [18e20] are expected to signifi-
cantly enhance time-integrated laser absorption in direct-drive,
but can also introduce non-uniformity if not properly tailored
to each implosion.Moreover, there is an important lasereplasma
interaction referred to as cross-beam energy transfer (CBET)
[21e23], which may significantly degrade laser absorption. In
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contrast to the high-mode nonuniformities, low-mode non-
uniformities (l(10� 20) are hard to suppress even by themeans
mentioned above. To minimize the low-mode nonuniformities,
optimization of laser illumination configuration is indispensable.

So far, various direct-drive irradiation systems have been
designed for different numbers of laser beams NB [18,24e31],
e.g., NB ¼ 12 (dodecahedron or Gekko XII [32]), 20 (icosa-
hedron), 24 (modified rhombicuboctahedron or OMEGA
[33]), 32 (20 face centers and 12 vertices of icosahedron) [34],
and 60 (truncated icosahedron or OMEGA-upgrade [35]; here-
after referred as U60). All these designs are based on Platonic
or Archimedean solids [36], which are applicable only to a
specific set of numbers corresponding to the solids' shape.
Here a new numerical scheme is presented to give an optimum
direct-drive beam configuration for an arbitrary number of
beams, which is obtained as a self-organizing system by
solving an N-body charged particle simulation [37]. As a
result, for example, a new forty-eight-beam system “M48”
(the detail is given below) has been found to show substan-
tially higher illumination uniformity than any other existing
direct drive systems based on the ancient geometry.

In this paper, we review some theoretical work for opti-
mizing beam configurations for direct-drive illumination as
well as introducing a new scheme for polar direct drive (PDD).
Note that an excellent review on direct-drive inertial
confinement fusion can be found in Ref. [38].

The basic assumption employed throughout the present
paper is that the physical quantities of the target and sur-
rounding corona plasma have all spherically symmetric pro-
files and that a single laser beam has axially symmetric
intensity profile with respect to its beam axis. It follows that, in
particular for the PDD design given here, the analysis better
applies to the early stage of implosion, when the target
deformation from sphericity can still be neglected. Besides, it
is assumed that the corona layer surrounding a spherical target,
in which laser rays propagate and deposit their energies, are
infinitesimally thin. Although the present paper contains such
many assumptions, it provides a reasonable set of results
including many features that would benefit a full radiation-
hydrodynamic simulation.

The structure of this paper is as follows: In Sec. 2, an
analytical model is given to evaluate the root-mean-square
(rms) non-uniformity assuming that every single laser beam
has a similar axisymmetric beam pattern but can have different
energy. Based on the axisymmetric assumption, one obtains a
useful function as the geometrical factor [33] that one can
assess the illumination performance from pure geometrical
point of view, which is crucial when optimizing an illumina-
tion configuration. In Sec. 3, optimum configurations are
determined for axisymmetric irradiation system, in which all
the laser beam axes go through the target center and are ar-
ranged in a cone shape. In Sec. 4, a new analytical model for
PDD is proposed, in which the laser beams are kept off the
target center. It should be noted that the present work goes
beyond the previous works on PDD [30,39], which were ob-
tained rather empirically, on the point of determining optimum
configurations mechanically as an eigenvalue problem. In Sec.

5, a numerical model is presented to determine a best
configuration for an arbitrary number of laser beams based on
a self-organizing system of charged particles. In terms of the
analysis, it is shown that more laser beams does not neces-
sarily bring about higher illumination uniformity. Finally Sec.
6 is devoted for a summary.

2. Analytical model for uniformity evaluation

2.1. Geometrical factor

In this subsection, we briefly review an analytical model by
Skupsky and Lee [33] and in the next subsection we extend it
to evaluate illumination uniformity under system imperfec-
tions [40]. We assume that the absorbed pattern of every single
beam has a similar axisymmetric profile to each other, but
each beam can have different amplitudes. This axisymmetric
assumption can be used only if the beam axes pass through the
target center, therefore it applies to Secs. 3 and 5 but does not
apply to the PDD analysis given in Sec. 4, where the beam
axes are offset from the target center. The absorbed intensity
profile of the kth laser beam is expanded in Legendre
polynomials,

IkðgÞ ¼ Ik

"
1þ

X∞
l¼1

alPlðcosgÞ
#
; ð1Þ

where Ik denotes the average intensity over the sphere, and the
lth coefficient,

al ¼ 2lþ 1

2

Z1
�1

IkðgÞ
Ik

PlðcosgÞdðcosgÞ; ð2Þ

is common for each beam. The angle g is taken between the
beam axis bUk (the hat denotes a unit vector), and an observing
point br, i.e., cosg ¼ br$ bUk. The total absorbed intensity is the
sum of Eq. (1) over all beams:

IaðbrÞ ¼ IT þ
X∞
l¼1

al
XNB

k¼1

IkPl

�br$ bUk

�
; ð3Þ

where IT ¼P
k

Ik. The rms deviation is then defined by

srms ¼
�

1

4pI2T

Z
½IaðbrÞ � IT�2dbr

�1=2

¼
 X∞

l¼1

s2
l

!1=2

; ð4Þ

where sl is the lth component obtained by the use of orthog-
onal property of spherical harmonics, which is further
decomposed as a product in the form,

sl ¼ alffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p Gl; ð5Þ

where the first term al=
ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
is the single beam factor,

while the second term is the geometrical factor defined by
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Gl ¼
"XNB

j¼1

XNB

k¼1

Pl

� bUj$ bUk

�
Ij Ik

.
I2T

#1=2
: ð6Þ

As can be seen from Eq. (6), the geometrical factor Gl

includes all the basic information, i.e., the pointing and power
of an individual beam, and therefore Gl provides very essential
geometrical spectrum of a given illumination system.

The formalism of Eqs. (1)e(6), first proposed by Skupsky
and Lee [33], treats a specific spherical surface or approxi-
mately a very thin layer compared to the radius. Therefore the
model cannot rigorously describe such a physical picture as
laser absorption over a long range in the plasma and resultant
three-dimensional (3D) absorption pattern. However, as long
as the 3D absorption distribution of an individual beam is still
axisymmetric and overlapping with the others can be treated
as linear, the above formalism is always valid when assessing
direct-drive laser configuration. In other words, even at
different depth in the radial direction characterized by
different single beam spectrum al, the spectrum of Gl has its
own eigenstructure and is kept unchanged once the laser
illumination configuration is fixed.

Fig. 1 shows Gl for different number of beams NB and
mode number l. The label “P32” denotes the solid body with
32 vectors corresponding to 12 face centers and 20 vertices of
one of the Platonic solids, dodecahedron, while “M48”,
“M60”, and “M72” denote other specific configurations with
48, 60, and 72 vectors that are obtained by a new algorithm
utilizing self-organizing system [37] as will be discussed in
Sec. 4. The advantages of increasing NB can be easily seen in
Fig. 1. By increasing NB, the amplitudes of Gl in general
decrease, and the lowest dominant mode nd increases, which is

approximately given by nd � p
ffiffiffiffiffiffi
NB

p
=2 [40]. Note that the

geometrical spectra for P32 and U60 are similar to each other
in spite that the numbers of beams are different by a factor of

two. Their common lowest dominant mode is nd ¼ 10. The
geometrical factor Gl also plays an important role when
evaluating hohlraum radiation uniformity [41]. Recently, Lan
et al. proposed hexahedral hohlraum target [42,43]. In their
hohlraum design, the lowest dominant mode is nd ¼ 4, which
is at a glance substantially lower than with direct-drive
configuration, however in indirect-drive targets, the unifor-
mities are strongly smeared out by X-ray radiation [41,44].

2.2. Imperfection effects

Below we find how system imperfections degrade the
illumination uniformity [40] by assessing the behavior of Gl.
We first consider power imbalance effect, where the pointing
of the beams is assumed to be perfect, but the beam powers are
fluctuated by the factors εk as follows,

Ik ¼ I0ð1þ εkÞ;
XNB

k¼1

εk ¼ 0;

 XNB

k¼1

ε
2
k

�
NB

!1=2

¼ sP; ð7Þ

where I0 ¼ IT=NB is the average intensity and sP represents
the rms deviation of power imbalance. With the help of Eq.
(7), the geometrical factor defined by Eq. (6) is then rewritten
in the form

Gl ¼
h�
G0

l

�2 þ ðDGlÞ2
i1=2

; ð8Þ

where

G0
l ¼

"XNB

j¼1

XNB

k¼1

Pl

�bU0

j $
bU0

k

	.
N2

B

#1=2
; ð9Þ

DGl ¼
"XNB

j¼1

XNB

k¼1

Pl

�bU0

j $
bU0

k

	
εjεk

�
N2

B

#1=2
: ð10Þ

The average DGave
l and the rms deviation DGrms

l of DGl are
of high importance and interest, which are respectively given
by

DGave
l ¼ sPffiffiffiffiffiffi

NB

p ; DGrms
l ¼ sPffiffiffi

2
p

NB

: ð11Þ

Next, we assess the pointing error effect assuming perfect
power balance among the beams, but the beam pointing (the

axes direction bUk) are deteriorated. The geometrical factor is
then rewritten by

Gl ¼
(XNB

j¼1

XNB

k¼1

Pl

h� bU0

j þD bU j

	
$
�bU0

k þD bUk

	i.
N2

B

)1=2

;

ð12Þ

where the perturbed beam axes are still unit vectors, i.e.,


 bU0

k þ D bUk




 ¼ 1 is kept for all k's. Assuming that D bUk has

Maxwellian distribution with its rms deviation, sU, given in
the form,

Mode number l

G
eo

m
et

ric
al

 fa
ct

or
 G

l

Fig. 1. Geometrical factors for different configurations with NB ¼ 32e72. A

good measure of an illumination configuration is “how many lower modes are

suppressed in the spectrum of the geometrical factor”. Based on the measure,

the superiority of the direct drive illumination configurations is read to be

M72 > M60 > M48 > U60 > P32 in this figure.
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sU ¼
"XNB

k¼1

�
D bUk

�2�
NB

#1=2
; ð13Þ

the statistical average of Gl is given by

DGave
l ¼

�
lsU

. ffiffiffiffiffiffiffiffi
2NB

p
; lsU(1;

1
� ffiffiffiffiffiffi

NB

p
; lsUT1:

ð14Þ

Thus the averages DGave
l , subject to power imbalance and

pointing error, have the same dependency in proportion to

1=
ffiffiffiffiffiffi
NB

p
.

When the imperfections sP and sU are both included in the
irradiation system, one can obtain a simple formula for srms in

terms of the canonical one s0rms (sP ¼ sU ¼ 0) and the dete-
rioration Dsrms with the aid of Eqs. (4), (5), (8), (10) and (14),

srms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
s0
rms

�2 þ ðDsrmsÞ2
q

; ð15Þ

where

Dsrms ¼ ssingle
rms

ssysffiffiffiffiffiffi
NB

p ; ð16Þ

is further composed of the rms deviation of the single beam,

ssingle
rms ¼

 X∞
l¼1

a2l
2lþ 1

!1=2

; ð17Þ

and the system imperfection ssys given by

ssys ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
P þ
�
lsU

�2q
; ð18Þ

where

l¼ 1

s
single
rms

"X∞
l¼1

l2a2l
2ð2lþ 1Þ

#1=2
; ð19Þ

is the effective mode number. Both ssinglerms and l depend on the
pattern of an individual beam, and are in general limited in a
narrow region between 1 and 3, if the single beam pattern has
a smooth curve. If s0rms is small enough (after all we have to
seek such a combination of a single beam pattern and a
configuration of beams to satisfy s0rms � 0:1% e 0.5%), then
srmszDsrms practically holds for values of ssys on the order of
1%. In practical systems, there are even more statistical fluc-
tuations such as beam-to-beam shapes and mistiming. Such
errors can be taken into account approximately in Eq. (18) in

the form as ssys ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22 þ s23 þ…

p
, as long as the errors

are small enough and statistically irrelevant to each other.
Here we demonstrate that the model with axisymmetric

assumption can also be applied to axially asymmetric patterns.
Suppose that asymmetric kth beam pattern is approximately
decomposed into two axisymmetric patterns, whose beam axes

are bU0

k and bU0

k þ D bUk, in the form,

IkðbrÞ¼ I0

 
1þ
X∞
l¼1

n
alPl

�br$ bU0

k

	
þblPl

hbr$�bU0

k þD bUk

	io!
:

ð20Þ
Then, using the orthogonal property of spherical har-

monics, the rms deviation is worked out to be

srmsz

(X∞
l¼1

"
ðal þ blÞ2
2lþ 1

�
G0

l

�2 þ b2l
2lþ 1

lðlþ 1Þs2
U

2NB

#)1=2

; ð21Þ

where sU≪1 is again assumed. Since the first term can often
be negligible for lower modes in an optimized system, Eq. (21)

is further reduced to srmszssinglerms lsU=
ffiffiffiffiffiffi
NB

p
, where ssinglerms is

relevant to the coefficients bl. Thus the nonuniformity with
asymmetric absorption patterns can be equivalently evaluated
by an effective imperfection sU. For more general cases, one
can easily extend the expression of Eq. (20) by substituting the

asymmetric part for SiblPl½br$ð bU0

k þ DUi
kÞ�.

In this subsection we did not address “mis-pointing” (off-

center illumination keeping the original pointing bUk), which is
essentially different from the “pointing error” described by
Eqs. (12)e(14). This mis-pointing is much more likely to
occur in practical systems. However, the mis-pointing can also
be treated by combining the analyses used for the “pointing
error” and the above asymmetric pattern (the detailed analysis
is not given in this paper).

3. Optimization of multi-cone configuration

The conic irradiation system presented here provides a
mechanical scheme, with which srms can be reduced with
increasing NB [46]. Fig. 2 shows the schematic picture of a
conic irradiation system. The beam axes pointing to the target
center are arranged on NC cone surfaces (NC ¼ 4 in Fig. 2);
the ith cone is characterized by the polar angle Qi, and the
total energy Ei. For simplicity, we start with the limiting case
where the number of beams is infinitely large (NB ¼ ∞) and
are divided into NC cones characterized by cone angles Q1,
Q2;/;QNC

, and energies E1, E2;/;ENC
. It should be noted

that the ratios of the beam numbers between the groups do not
matter for the moment. In the limit of NB ¼ ∞, the geomet-
rical factor, Eq. (6), is rewritten in the form,

Gl ¼
2
4XNC

i¼1

XNC

j¼1

EiEj

Zp
0

Pl

�
cosgij

�
df

,
p
XNC

i¼1

XNC

j¼1

EiEj

3
5

1=2

;

ð22Þ

where

cosgij ¼ sinQisinQjcosfþ cosQicosQj: ð23Þ
With the help of the formula,
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Zp
0

Pl

�
cosgij

�
df¼ pPlðcosQiÞPl

�
cosQj

�
; ð24Þ

then Eq. (22) reduces to a simple form,

Gl ¼
XNC

i¼1

EiPlðcosqiÞ
,XNC

i¼1

Ei: ð25Þ

To eliminate the non-uniformities of all odd modes, the
beams must be arranged symmetrically with respect to the
target center. Apparently, this implies that the cone configu-
rations must be symmetric with respect to the equator plane
(q ¼ p=2). For this reason, we are interested in only one
hemisphere. The NC-cone system has then NC�1 independent
parameters, i.e. NC=2 angles and NC=2� 1 relative energies.
Mathematically this means that nonuniformities of NC�1 even
modes can be intentionally smeared out regardless of the
single beam pattern, by optimizing the parameters such that

G2 ¼ G4 ¼…¼ G2ðNC�1Þ ¼ 0: ð26Þ
Thus, the lowest dominant mode number is given by

nd ¼ 2NC. The mth equation in Eq. (26), G2m ¼ 0, is rewritten
from Eq. (25) in the form,

XNC=2

i¼1

EiP2mðcosQiÞ ¼ 0: ð27Þ

Because the number of the independent parameters is equal
to that of the simultaneous equations, we can expect non-
trivial solutions to them. Table 1 gives such solutions for Qi

and Ei that are numerically obtained.
So far, we treated an idealized case of an infinitely large

number of beams (NB ¼ ∞). However, NB is, of course, finite
in real systems. Then, the first question would be: whether the

optimum conditions obtained for NB ¼ ∞ are still valid for a
finite number of beams, and if so, what is the minimum
required number of NB for each NC, and how many beams are
to be assigned to each cone? To answer these questions, we
have performed numerical calculations on the geometrical
factor as Eq. (6). Thereby, the cone angles Qi and the energies
Ei are taken from Table 1. Suppose that a finite number of
beams, Mi, is assigned to the ith cone (i ¼ 1,2,…, NC) under
fixed number of NB ¼ SiMi. The beams are assumed to be
uniformly distributed along the azimuthal direction on each
cone surface, and have equal energy, Ei/Mi, for the ith cone.
Furthermore, the rotations DFi of beam axes along the
azimuthal direction are also taken into account. The azimuthal
coordinate of jth beam of ith cone is then given by
Fij ¼ 2pj=Mi þ DFi ( j ¼ 1,2,…, Mi). The possible combi-
nations fM1;M2;…;MNC

g are numerically found, and sum-
marized in Table 2. It should be noted that the rotation DFi has
turned out not to affect the numerical results at all. Also, for
example, the case of hexahedron is classified into the double-
cone configuration: NC ¼ 2, M1 ¼ 3, and NB ¼ 6.

4. Design of polar direct drive

In the previous Section, we treated axisymmetric system,
where all the beam axes go through the target center. If the
beam axes are allowed to be off target center, the illumination
design becomes more flexible at least in the parametric space.
In this Section, the absorbed laser patterns are not axisym-
metric anymore as a result of the oblique incidence, while the
cross-sectional pattern of an incident single beam is kept
axisymmetric as before just for simplicity.

Here suppose a laser beam with an incident angle j

(0 � j � p=2) to the polar axis (see Fig. 3) characterized by

the unit vector bU ¼ ðsin j; 0; cos jÞ. Moreover the beam axis

Fig. 2. Schematic view of the conic irradiation system for NC ¼ 4 case. The

beam axes pointing to the target center are arranged on the cone surfaces.

Table 1

Optimum irradiation configuration for axisymmetric system (see Fig. 2 for

NC ¼ 4 case). The polar angles, Q1eQ4, are measured in the unit of degree.

The energy assigned to the 1st cone E1 is normalized to unity.

NC 1st cone 2nd cone 3rd cone 4th cone

Q1 E1 Q2 E2 Q3 E3 Q4 E4

2 54.736 1

4 70.124 1 30.556 0.53340

6 76.195 1 48.608 0.77100 21.177 0.36615

8 79.430 1 58.296 0.86496 37.187 0.61315 16.201 0.27911

Table 2

Optimized configuration of number of beams on each cone (see Fig. 2); the

corresponding polar angles and energies are given in Table 1. The beam

number configurations given here give rough instruction on how many beams

are necessary to keep the performance of NC-cone design, i.e., nd ¼ 2NC.

NC nd M1 M2 M3 M4 NB

2 4 3 6

4 8 7 7 28

6 12 11 11 8 60

8 16 15 15 13 8 102
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is assumed to intersect with the polar axis at coordinate z. The
incident angle c of a laser light hitting at an arbitrary pointbrðq;fÞ is given by

cosc¼ br$bU ¼ sinqcosfsinjþ cosqcosj: ð28Þ
In the following, we assume that the spherical corona layer

is thin enough and that all the incident laser rays are parallel to
the beam axis. In the corona layer, the laser energies are
absorbed along the trajectories and finally refracted out of the
target sphere. This thin layer assumption is valid only for the
early stage of implosion. The corona plasma is approximated
to have an exponentially decaying density profile along the

radius with a scale length L ¼ 

ncðvne=vrÞ�1


, where nc is the

critical density, and the laser rays undergo collisional ab-
sorption along their trajectories. Then the absorption effi-
ciency of a laser ray with an incident angle c is computed by
[47]

haðcÞ ¼ 1� ð1� h⊥Þcos
3c
; ð29Þ

where h⊥ ¼ 1� expð�8neiL=3cÞ is the absorption efficiency
of a normally incident laser (c ¼ 0), nei is the electron-ion
collision frequency at the critical density; c is the speed of
light. Furthermore, we employ a super-Gaussian intensity
profile as the single beam profile in the form,

ILðxÞ ¼ I0exp

"
�
�

x

aR0

�b
#
; ð30Þ

where I0 is the laser intensity on the beam axis, a and b are the
control parameters of the beam shape, x is the distance from
the beam axis, given under the present configuration by

x¼R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsinqsinfÞ2þðz�cosqþsinqcosfcotjÞ2sin2j

q
: ð31Þ

The resultant absorbed intensity distribution of a single
beam is then given as a function of cðq;f;jÞ and xðq;f;j; zÞ
in the form,

Iaðq;fÞ ¼ haðcÞILðxÞcosc: ð32Þ
The area being illuminated by a single beam is given by



f

�
8><
>:

p; 0� q� p

2
�j;

arccosð�cotjcotqÞ; p

2
�j<q� p

2
þj:

ð33Þ

Fig. 4 shows the absorption pattern by a single beam for
different values of j and z drawn on the q�f plane. Changing
the stand-off distance z from z ¼ 0.5 to z¼�0.5 under the
same pointing angle j, the absorption pattern moves to the
right as could be expected. The same happens when increasing
the angle j from j ¼ p=6 to j ¼ p=3, keeping z unchanged.
Thus the absorption pattern can be controlled in two di-
mensions in terms of j and z.

Suppose that a number of laser beams, which belong to the
same “illuminating ring” and are characterized by a set of j
and z, illuminate a spherical target with the common absorp-
tion pattern and uniformly surround the target polar axis. The
averaged absorption pattern Iav is then given as a function of
only q in the form,

IavðqÞ ¼ 1

2p

Zp
�p

Iaðq;fÞdf: ð34Þ

Fig. 5 shows the numerical result of Iav(q) obtained for
different z-values under the fixed condition, j ¼ p=3,
a ¼ 0:6, b ¼ 6, and h⊥ ¼ 0:95 (compare with Eqs. (29) and
(30)). The two curves with z ¼ 0.5 and �0.5 correspond to
the upper-right and lower-right sub-figures in Fig. 4, respec-
tively. The peak values are normalized to unity for simplicity.

The ring pattern Iav(q) can be now expanded into Legendre
polynomials,

IavðqÞ ¼ Iav

"
1þ

X∞
l¼1

blPlðcosqÞ
#
; ð35Þ

where Iav denotes the average intensity over the sphere, and
the coefficient bl is given by

bl ¼ 2lþ 1

2

Z1
�1

IavðcosqÞ
Iav

PlðcosqÞdðcosqÞ: ð36Þ

Fig. 6 shows the amplitude bl obtained as a function of the
incident angle of beam axis j and the stand-off distance z for
different Legendre modes, l ¼ 2, 4, 6, and 8. Apparently, with
increase in l, the pattern of bl becomes ruffled more frequently
on the j�z plane. Such a behavior brings about multiple sets
of eigenvalue solutions of the system, from which the most
practical set for ICF implosions needs to be found.

When we consider NC cone system as was treated in the
previous Section, we have NC/2 cones on one hemisphere, and
each cone has three independent parameters, i.e., the incident

Fig. 3. Illumination configuration for polar direct drive.
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angle j, the stand-off distance z, and the total energy E. Since
the energies can be normalized to one of a specified cone (for
example E1 ¼ 1 as in Table 1), one has 3NC/2�1 free pa-
rameters after all, in other words, one can intentionally delete
3NC/2�1 lowest modes by optimizing the parameters. This
can be expressed such that the total amplitude B2m of 2mth
Legendre mode integrated over NC cones can be smeared out
by satisfying the following equations,

B2m ¼
XNC=2

i¼1

Eib2mðji; ziÞ ¼ 0; m¼ 1;2;…;
3

2
NC � 1: ð37Þ

This relation corresponds to Eq. (26) for the axisymmetric
design with all the beam axes passing through the target
center. In case of NC ¼ 4 corresponding to Fig. 2, five un-
known parameters, j1, j2, z1, z2, and E2 are numerically
optimized to achieve B2 ¼ B4 ¼ … ¼ B10 ¼ 0 by solving the
simultaneous equations Eq. (37) to give a set of solution,
j1 ¼ 46�, j2 ¼ 53�, z1 ¼ �0.65, z2 ¼ 0.80, E1 ¼ 1, and
E2 ¼ 0.40 for the fixed parameters, a ¼ 0:6, b ¼ 6:0, h⊥ ¼ 0:9
(it gives just one of the several solutions).

The set of the parameters can be compared with the optimal
design for normally directed system given in Table 1 (NC ¼ 4),
e.g., q1 ¼ 70�, q2 ¼ 30�, E1 ¼ 1, and E2 ¼ 0.53, which are
obtained regardless of the values of a, b, and h⊥ because the
beam pointing and single beam pattern are separated from
each other under the condition, z1 ¼ z2 ¼ 0. In the same
manner, one can obtain optimum illumination configurations
for an arbitrary number of NC. The numerical scheme given
here can also be applied to such systems as NIF and LMJ,
which already have fixed incident angles ji, and therefore the
stand-off distances zi and assigned energies Ei are the pa-
rameters to be optimized. More detailed analysis, taking the
temporal behaviors of target implosion and pulse shape into
account, is now under way.

Fig. 4. Absorption pattern illuminated by a single beam for different values of j and z on the q�f plane. The horizontal and vertical axes stand for the polar angle q

and the azimuthal angle f in degrees, respectively. Fixed parameters are a ¼ 0:9, b ¼ 6, h⊥ ¼ 0:95.
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Fig. 5. Averaged absorbed intensity Iav(q). Fixed parameters are a ¼ 0:9,

b ¼ 6, h⊥ ¼ 0:95, j ¼ p=3, while z is varied for three different values.
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5. Self-organizing Coulomb system to optimize beam
pointing

Here we describe a totally new approach to find optimum
beam configurations in ICF, which applies to direct drive
scheme with all the beam axes passing through the target
center. Suppose that NB charged particles are randomly
distributed on a sphere at t ¼ 0 and are dynamically redis-
tributed due to the Coulomb repulsion to settle at a fixed
configuration in a self-organized manner [37]. Our hypothesis
is then as follows: If one finds such a configuration of NB

charged particles on a sphere that has the lowest Coulomb
potential energy, the resulting system gives the highest irra-
diation uniformity. The radial beam axes are determined from
the particle positions obtained. The present method reproduces
Platonic solids with NB ¼ 4, 6, 8, and 12 except for NB ¼ 20.
Moreover, such new configurations as M48 and M72 have
turned out to demonstrate even better performance in
achieving higher irradiation uniformity than the other config-
urations, where the notation “M48”, for example, stands for
the solution obtained by the present method with NB ¼ 48. In
addition, we use the notation “P12” (dodecahedron), “P20”
(icosahedron), and “P32” (12 faces and 20 vertices of do-
decahedron) for Platonic solids and their secondary solids.
Here it should be noted that Refs. [45,46] propose cylindri-
cally symmetric irradiation systems with different number of
beams, which are substantially different from spherically
symmetric configurations obtained by the present method. In
fact, according to numerical surveys (details of the compari-
sons are not presented in this paper), the latter (spherical)

shows higher performance as an illumination system than the
former (cylindrical).

The equation of motion for the ith charged particle
(1 � i � NB), in which all the physical quantities are appro-
priately normalized (unit mass, unit charge, etc.) and thus
becomes dimensionless, is given by

d2bri
dt2

¼
XNB

j¼1ðjsiÞ

bri �brj

bri �brj

3 �
dbri
dt

; ð38Þ

where the hat denotes a unit vector (jbriðtÞj≡1). The last term of
Eq. (38) plays the role of an artificial viscosity to stabilize the
system. At t ¼ 0, NB charged particles are randomly distrib-
uted on the sphere, and they move around on the sphere ac-
cording to Eq. (38). Since our purpose here is not to precisely
trace the temporal evolution of the NB-body system but to find
the lowest potential configuration at t/∞, we can employ a
relatively coarse time increment Dt � 0:1 in the simulations
for NB(100. In this case, the iteration stops typically after a
few hundred time steps at the solution when the variation of
the potential energy Ep between two succeeding steps is set to
be less than 10�15, where Ep is defined by

Ep ¼ 1

2

XNB

i¼1

XNB

j¼1ðjsiÞ

1

bri �brj

: ð39Þ

Fig. 7 shows the temporal evolution of the positions of
twelve charged particles on a sphere at time steps, t ¼ 0, 20,
100, and 200, obtained from a simulation for M12. At t ¼ 0,
the twelve particles are put on the sphere clustered close to

Fig. 6. Amplitude bl for laser absorption with respect to a single cone configuration, which is obtained as a function of the incident angle of beam axis, j, and the

stand-off distance, z (referred to Fig. 3). The parameters, a ¼ 0:9, b ¼ 6, h⊥ ¼ 0:9, are fixed.
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each other. The particles on the sphere are projected on the xy-
(or equatorial-) plane normal to the view axis (z-axis), where
the blue and red colors denote that they are on the north and
south hemispheres, respectively. The concentric dashed curves
stand for the projections of equi-latitude circles of 15�, 30�,
45�, 65�, and 75� measured from the pole axis. In the final
configuration at t ¼ 200, the twelve particles settle down at the
face centers of the dodecahedron, as expected. Thereby ten
particles, except for the two at the poles, all have polar angle

q ¼ arccosð1= ffiffiffi
5

p Þ ¼ 63:43
�

or 116.6�, being positioned
symmetrically on the same equi-latitude circles.

Fig. 8 shows the temporal evolution of the relative potential
energy for NB ¼ 12, defined by DEp ¼ EpðtÞ � Ep∞, where

Ep∞≡Epð∞Þ. The solid curve corresponds to Fig. 7, in which

the twelve face centers of the dodecahedron (see the 3D
illustration) are reproduced at the end of calculation (tT200).
The dashed curve corresponds to another case: the twelve
particles are randomly distributed on the sphere at t ¼ 0. The
uppermost dotted curve has the same initial configuration as in
Fig. 7, but with a different time increment Dt ¼ 0.6. This
simulation never converges to a stable configuration. Although
the solid and dashed curves evolve on different trajectories in

Fig. 8, both of them finally converge to the same configuration,
i.e., the dodecahedron. As long as the number of particles is
kept relatively small (NB(30), the final configurations ob-
tained by the present method do not depend on their initial
configurations at all. For larger numbers of charges, the final
solution depends on the initial condition to give infinitesimally
different final potential energies Ep. Such different solutions
correspond to local minima in the potential field, though they
generally provide very similar degree of illumination perfor-
mance to each other.

We here again assume for simplicity that the corona layer,
in which the laser rays are propagated with their energies
being absorbed along the trajectories and finally scattered out
of the target sphere, is thin enough and that all the incident
laser rays are parallel to the beam axis. According to the
separation of the single beam spectrum (al) and the pointing
configuration (Ul) as given in Sec. 2, the results obtained by
the present self-organizing mechanism are not affected by the
size or pattern of a laser beam, as long as they are assumed to
be axisymmetric. The irradiation configuration of such a single
beam is depicted in Fig. 9, where r and r0 are the distance of a
ray measured from the beam axis and the target radius,
respectively. Each ray is obliquely incident on the target sur-
face with a pointing angle J ¼ arcsinðr=r0Þ to the surface
normal. As treated in Sec. 4, the corona plasma is approxi-
mated to have an exponentially decaying density profile along
the radial direction. Then the absorption efficiency of a laser
ray with a pointing angle J is computed [47] by

haðJÞ ¼ 1� ð1� h⊥Þcos
3J. Furthermore, we employ a super-

Gaussian intensity profile as a test profile of the single beam in

Eq. (30): ILðrÞ ¼ I0exp½�ðr=ar0Þb�, where I0 is the laser in-
tensity on the beam axis, and a and b are the control param-
eters of the beam shape. Since the target polar angle q and the
incident ray angle J coincide due to the parallel ray condition
(q ¼ J), the resultant absorbed intensity distribution of a
single beam is given as a function of q only by

IaðqÞ ¼ I0

h
1� ð1� h⊥Þcos

3q
i
exp
h
� ðsinq=aÞb

i
cosq: ð40Þ

Fig. 10 shows the rms nonuniformity for various number of
NB ranging from 10 up to 100 under the optimized configu-
rations obtained by the self-organizing method; fixed

Fig. 7. Temporal evolution of the positions of twelve charged particles on a sphere at different time steps. The points are projected on the xy- (or equatorial-) plane

normal to the view axis (z-axis), where the blue and red colors denote whether they are on the north or south hemisphere, respectively. The concentric dotted circles

denote isocontour plane with polar angles of 15�, 30�, …, 75�. The final configuration at t ¼ 200 coincides with that of the dodecahedron (referred to the inset in

Fig. 8.)

Fig. 8. Temporal evolution of DEp for NB ¼ 12. The solid and dashed curves

corresponds to the case of Fig. 1 and another with random distribution of

particles at t ¼ 0, respectively. Regardless of the initial configuration of par-

ticles, the algorithm always gives the same result, i.e., dodecahedron.
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parameters are h⊥ ¼ 90%, b ¼ 5 (in Fig. 10(a)) and b ¼ 6 (in
Fig. 10(b)) and four different values of a for the super-
Gaussian shape of an applied laser beam (referred to Eq.
(30)). The overall behavior of the curves is similar to each
other; after the quick drop for NB ¼ 10�20, srms mono-
tonically decreases for NB ¼ 20�60. For the range of
60(NB(100, srms is nearly leveled off. Apart from these
general behavior, two outstanding performances are found at

NB ¼ 48 and NB ¼ 72, that are more conspicuous on
Fig. 10(a). The eigenstructures of the two configurations, M48
and M72, are clarified below.

Fig. 11 shows perspective views of some irradiation config-
urations; M24, M48, and M72 are obtained by the present
method, whileU24 andU60 are ones employed at Laboratory of
Laser Energetics (LLE, University of Rochester). For M48 and
M72 in Fig. 11, the solid and open circles denote that they are
assigned to opposite hemispheres to each other. Laser beams are
expected to irradiate the target with their beam axes passing
through the vertices and the target center. Note that the three-
dimensional (3D) views for M24, U24, and U60 show only the
topological structures of the corresponding solids of the 13
Archimedean solids [36] (for a detailed description, for example,
see Ref. [25]); the optimum beam positions obtained by the
present method are slightly different from those 3D views.

Careful observation reveals that M24, M48 and M72 have
very symmetric patterns. For example, in M48, equilateral
triangles and squares are regularly located on the faces of a
truncated octahedron. In the case of M72, twelve regular
pentagons, each of which is composed of 6 points including
the central points, are located on the dodecahedron faces, as
can be seen in Fig. 11. Moreover, most of the optimized pat-
terns obtained by the present method have no pair of points
that are antipodes of each other (the twelve face centers of
dodecahedron in M72 are rather exceptional). This is a pro-
nounced advantage in view of optical system protection. Be-
sides, the present algorithm provides the best irradiation
configuration not only for even numbers but also for odd
numbers of NB.

The three configurations, M24, M48, and M72, have
particularly symmetric structures such that they are expressed
in a very compact way as follows: The left column of Table 3
gives the minimum data set for the exact spherical coordinates

Laser profile
of a single beam

Incident rays

Charged 
particle

Corona layer

r

θ2r0

Fig. 9. Schematic view of applied laser and the target; q is the polar angle at an

observed point, and F is the incident angle of a laser. It is assumed that the

corona layer is thin enough and the laser rays are incident on the spherical

target surface parallel to the laser axis (in this case q ¼ F). In the self-

organizing Coulomb system, a pseudo charged particle (red circle) is sup-

posed to stand for the crossing point between a beam axis and the target

surface.
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Fig. 10. The rms nonuniformity for various number of NB. Their configurations are obtained by the self-organizing method. Fixed parameters are h⊥ ¼ 90%, (a)

b ¼ 5 and (b) b ¼ 6 with four different values of a, for the super-Gaussian shape of an applied laser beam (see Eq. (30)).
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of M24 configurations, where only four pairs of coordinates
ðqi;fiÞ for i ¼ 1, 2, 3, 4 are given. Applying all the possible
parametric combinations of the integers, i, m, and l, the co-
ordinates of 24 (¼4 � 2 � 3) beams of M24 measured in
degrees are generated by

M24

8<
:

qiþ4mþ8l ¼ ð�1Þmqi þ 180m;
fiþ4mþ8l ¼ ð�1Þmfi þ 95:6192mþ 120l;
i ¼ 1; 2; 3; 4; m ¼ 0; 1; l ¼ 0; 1; 2:

ð41Þ

The integers, m and l, perform the periodic projection of the
basic coordinates in the table onto q and f coordinates,
respectively. The four basic points in Table 3 form a square. In
the same manner, the middle and right columns of Table 3 give
the minimum data set for the exact spherical coordinates of
M48 and M72, respectively, where only six and seven pairs of
coordinates ðqi;fiÞ are given, and all the coordinates of 48
(¼6 � 2 � 4) and 72 (¼7 � 2 � 5 þ 2) beams measured in
degrees are generated according to the following formulas:

M48

8<
:

qiþ6mþ12l ¼ ð�1Þmqi þ 180m;
fiþ6mþ12l ¼ ð�1Þmfi þ 37:2604mþ 90l;
i¼ 1;2;…;6; m¼ 0;1; l¼ 0;1;2;3;

ð42Þ

M72

8>><
>>:

qiþ7mþ14l ¼ ð�1Þmqi þ 180m;
fiþ7mþ14l ¼ ð�1Þmfi þ 88:8328mþ 72l;
i ¼ 1; 2;…; 7; m ¼ 0; 1; l ¼ 0; 1; 2; 3; 4;
ðq71;f71Þ ¼ ð0; 0Þ; ðq72;f72Þ ¼ ð180; 0Þ:

ð43Þ

Here it should be noted that 60- and 72-beam designs
including U60 have the lowest dominant mode number,

nd ¼ 10, in common as long as they are based on one of the
Platonic solids [25], i.e., dodecahedron. In contrast, the present
method gives nd ¼ 12 for M48, nd ¼ 14 for M60, and nd ¼ 15
for M72, which are significant advantage of the new
configurations.

Fig. 12 shows the irradiation nonuniformity srms defined by
Eqs. (15)e(17) versus the system imperfection ssys for different

irradiation configurations. The employed parameters are

a ¼ 0:9 andb ¼ 6 for the beamprofile, fromwhich ssinglerms ¼ 2:5
is computed, and the absorption is set to be h⊥ ¼ 95% just as an
example. The spectrum for the absorbed single beam factor
shows approximately an exponential decrease with the mode

number such that al=
ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
z4:0 expð�0:48 lÞ. There are two

important messages that can be read from Fig. 12: First, it is
crucial to optimize the irradiation system coherently with the
beam pattern. In the case of Fig. 12, for instance, M48 shows

Fig. 11. Perspective views of some characteristic irradiation configurations. M24, M48, and M72 are obtained by the present self-organizing method, while U24

and U60 are ones of the actual laser systems at LLE. Laser beams are expected to irradiate the target with beam axes through the vertices of those solid bodies. The

solid and dotted circles of M48 and M72 denote that they are on the opposite hemispheres to each other, and their exact spherical coordinates, (q, f), are given by

Eqs. (41)e(43) together with Table 3.

Table 3

Minimum data set to generate the spherical coordinates of M24, M48, and

M72 configurations (measured in degrees), all the coordinates of which are

generated by using this table contents and Eqs. (41)e(43).

i M24 M48 M72

qi fi qi fi qi fi

1 26.24800 0 21.24302 0 24.49171 84.24238

2 52.56226 55.84264 43.64296 43.69981 41.30650 48.91327

3 67.23147 345.7672 51.30717 86.62623 49.87536 87.02248

4 84.37483 25.62150 69.91959 25.70934 63.43495 62.41641

5 72.99624 59.45306 67.52800 35.82484

6 83.35323 88.40802 77.90530 83.44693

7 87.27933 56.58353
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comparable irradiation uniformity to those of M60 and M72.
Second, even if the irradiation system can achieve a super-high
irradiation uniformity under idealized circumstance, i.e.,

s0rms≪1 at ssys/0, this would be useless if the system imper-

fection is beyond the critical value scrtsyszðs0rms=s
single
rms Þ ffiffiffiffiffiffi

NB

p
. For

ssys >scrtsys, the rms nonuniformity can be roughly estimated by

srmsz2ssys=
ffiffiffiffiffiffi
NB

p
. This can be easily confirmed from Fig. 12,

where the four curves corresponding to M48, M60, M72, and
U60 are almost merged for ssysT3 % despite having clean rms

nonuniformities s0rms distributed at different levels from each

other for ssys≪2 %� 3 %. Note that high-mode non-

uniformities attributed to speckle patterns are not taken into
account here, the inclusion of which will smear to some degree
and lead to distinctive differences among the curves depicted in
this figure. Also note that the two different configurations, M48
and P32, are numerically compared in more detailed manner in
Ref. [20].

Fig. 13 plots isocontour maps of s0rms and the integrated
absorption efficiency,

ha ¼

Z 1

0

xexp
h
� ðx=aÞb

i
IaðqÞdx

I0

Z ∞

0

xexp
h
� ðx=aÞb

i
dx

; ð44Þ

where IaðqÞ is given by Eq. (40) with q ¼ arccos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
,

showing their dependence on the applied laser intensity
profile, Eq. (30), as a function of a and b, for the three
configurations, U60, M48, and M60; h⊥ is fixed at 95% to
draw the curves of ha. All these configurations have working
windows, where relatively high efficiency and uniformity are
achieved simultaneously. Such performance can be assessed
by comparing the area that satisfies both ha � 60% and
srms � 0:4%, for instance. Here again it should be noted that
Fig. 13 is obtained under several specific numbers and as-
sumptions and therefore they may substantially differ
depending on individual and practical situations. Neverthe-
less, a number of such parameter surveys have shown that, in
spite of the smaller number of beams, the illumination per-
formance of M48 is comparable enough to that of U60 (also
compare with Fig. 1). Furthermore, moderate slopes on the
contour map in Fig. 13 lead to more stable illumination
performance with variation of the laser intensity profile.
From those evaluations, M60 is generally expected to
provide even better illumination performance than M48 or
U60.

Fig. 12. The rms irradiation nonuniformity versus the system imperfection.

The inset shows the applied laser intensity profile in a super-Gaussian shape;

fixed parameters are a ¼ 0:9, b ¼ 6, and h⊥ ¼ 95% (see Eqs. (29) and (30)).

An important message: Unless system imperfections cannot be effectively

suppressed below a few percent, any benefits of an optimized beam configu-

ration are overwhelmed.

Ω60 M48 M60

Fig. 13. Isocontour maps of the clean rms nonuniformity s0rms (purple curves) and the integrated absorption efficiency ha (red dashed curves) showing their

dependence on the applied laser intensity profile (see Eq. (30)) as a function of a and b. The numbers are all in units of %, and h⊥ is fixed at 95% to draw the curves

for ha. Three different configurations, U60, M48, and M60, correspond to Omega-Upgrade, and optimized 48- and 60-beam configurations obtained by the self-

organizing Coulomb method, respectively.
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6. Summary

The purpose of optimizing laser illumination configuration is
to suppress lowest mode nonuniformities for l(10� 20 with
laser beams of NB(50� 100 as much as possible. We have
reviewed the schemes to optimize configuration of laser illu-
mination for direct-drive. Under the assumption that a single
laser beam has an axisymmetric absorption pattern, the illumi-
nation performance has been discussed in terms of the number
of laser beams and system imperfection as well as the absorbed
laser profile of a single beam. Based on the analytical model, the
rms nonuniformity is factorized into two components, the single
beam factor, al, and the geometrical factor, Gl.

For such a system in which all the beam axes go through
the target center, the illumination system turns out to be
optimized in terms of the geometrical factor alone. Besides,
we have proposed a new PDD scheme, with which lower
modes nonuniformity can be effectively suppressed by
appropriately choosing the stand-off distances of the beam
axes under the optimized combination of the incident angle of
beam axes and assigned energies of the illuminating cones.
The off-center illumination scheme is expected to improve the
irradiation uniformity of such laser systems as NIF or LMJ
that are originally constructed for indirect-drive. The practical
application of the present PDD method is still premature and
valid only for limited cases, since the dynamics and 3D fea-
tures of laser absorption are not taken into account. More
detailed analysis will be reported somewhere else.

A simple numerical model, which is based on a self-
organizing mechanism of charged particles on a sphere, is
presented to give the best configuration for an arbitrary
number of laser beams. It has turned out, for example, that one
of such configurations, M48 or M60, shows comparable or
even better illumination performance than any other existing
configurations.
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