• Laser & Optoelectronics Progress
  • Vol. 57, Issue 13, 131408 (2020)
Jiaqi Yao1、2、*, Xinming Tang1、2、**, Guoyuan Li2、3, Bo Ai1, Xiongdan Yang2、3, and Dongping Xie2、3
Author Affiliations
  • 1College of Geomrtics, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
  • 2Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, Beijing 100048, China
  • 3School of Mapping and Geographical Science, Liaoning Technical University, Fuxin, Liaoning 123000, China
  • show less
    DOI: 10.3788/LOP57.131408 Cite this Article Set citation alerts
    Jiaqi Yao, Xinming Tang, Guoyuan Li, Bo Ai, Xiongdan Yang, Dongping Xie. Cloud Detection of Laser Altimetry Satellite ICESat-2 and the Related Algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(13): 131408 Copy Citation Text show less
    References

    [1] Zwally H J, Schutz B E, Abdalati W et al. ICESat's laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics, 34, 405-445(2002).

    [2] Wang X W, Cheng X, Gong P et al. Earth science applications of ICESat/GLAS: a review[J]. Journal of Remote Sensing, 32, 8837-8864(2011).

    [3] Yu A W, Stephen M A, Li S X et al. Space laser transmitter development for ICESat-2 mission[J]. Proceedings of SPIE, 7578, 757809-757811(2010).

    [4] Yang F, Wen J H, Wang W. ICESat and ICESat-2 applications: progress and prospect[J]. Chinese Journal of Polar Research, 23, 138-148(2011).

    [5] Xie D P, Li G Y, Zhao Y M et al[J]. U.S. GEDI space-based laser altimetry system and its application Space International, 2018, 39-44.

    [6] Yu A W, Krainak M A, Harding D J et al. Development effort of the airborne lidar simulator for the lidar surface topography (LIST) mission[J], 8182, 818207(2011).

    [7] Tang X M, Li G Y[J]. Development and prospect of laser altimetry satellite Space International, 2017, 13-18.

    [8] Li G Y, Tang X M. Analysis and validation of ZY-3 02 satellite laser altimetry data[J]. Acta Geodaetica et Cartographica Sinica, 46, 1939-1949(2017).

    [9] Li G Y. Earth observing satellite laser altimeter data processing method and engineer practice[D]. Wuhan: Wuhan University(2017).

    [10] Tang X M, Li G Y, Gao X M et al. The rigorous geometric model of satellite laser altimeter and preliminarily accuracy validation[J]. Acta Geodaetica et Cartographica Sinica, 45, 1182-1191(2016).

    [11] Tang X M, Gao X M[J]. The Twelfth Five-Year development strategy research of mapping satallite and satallite surveying of China Bulletin of Surveying and Mapping, 2012, 1-4.

    [12] Li G Y, Huang J P, Tang X M et al. Influence of range gate width on detection probability and ranging accuracy of single photon laser altimetry satellite[J]. Acta Geodaetica et Cartographica Sinica, 47, 1487-1494(2018).

    [13] Mahesh A, Spinhirne J D, Duda D P et al. Atmospheric multiple scattering effects on GLAS altimetry II. Analysis of expected errors in Antarctic altitude measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 40, 2353-2362(2002).

    [14] Abdalati W, Zwally H J, Bindschadler R et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 98, 735-751(2010).

    [15] Mona L, Amodeo A. D’Amico G. Potentialities and limits of ICESAT-2 observation for atmospheric aerosol investigation[J]. EPJ Web of Conferences, 119, 04004(2016).

    [16] Yao J Q, Gao X M, Li G Y et al. Cloud optical depth inversion of echo energy data based on ICESat/GLAS[J]. Infrared and Laser Engineering, 48, 126-134(2019).

    [17] Palm S P, Yang Y K, Herzfeld U C et al[2019-08-30]. ATLAS/ICESat-2 L2A normalized relative backscatter profiles, version 1[2019-08-30].https:∥doi.org/10., 5067/ATLAS/ATL04, 001.

    [18] Yang Y K, Marshak A, Palm S P et al. Cloud impact on surface altimetry from a spaceborne 532-nm micropulse photon-counting lidar: system modeling for cloudy and clear atmospheres[J]. IEEE Transactions on Geoscience and Remote Sensing, 49, 4910-4919(2011).

    [19] Winker D M, Pelon J R. McCormick M P. The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds[J]. Proceedings of SPIE, 4893, 1211-1229(2003).

    [20] Mao F Y, Gong W, Li J et al. Cloud detection and parameter retrieval based on improved differential zero-crossing method for Mie lidar[J]. Acta Optica Sinica, 30, 3097-3102(2010).

    [21] Palm S P, Yang Y K, Herzfeld U C et al[2019-08-30]. ATLAS/ICESat-2 L3A calibrated backscatter profiles and atmospheric layer characteristics, version 1[2019-08-30].https:∥doi.org/10., 5067/ATLAS/ATL09, 001.

    [22] Yang Y K, Marshak A, Palm S P et al. Assessment of cloud screening with apparent surface reflectance in support of the ICESat-2 mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 1037-1045(2013).

    [23] Koelemeijer R B A, Stammes P, Hovenier J W et al. A fast method for retrieval of cloud parameters using oxygen: a band measurements from the Global Ozone Monitoring Experiment[J]. Journal of Geophysical Research, 106, 3475-3490(2001).

    [24] Palm S P, Hart W D, Hlavka D L et al. The algorithm theoretical basis document for the GLAS atmospheric data products[M]. ICESat (GLAS) Science Processing Software Document Series(2012).

    [25] Yang Y K, Marshak A, Varnai T et al. Uncertainties in ice-sheet altimetry from a spaceborne 1064-nm single-channel lidar due to undetected thin clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 48, 250-259(2010).

    Jiaqi Yao, Xinming Tang, Guoyuan Li, Bo Ai, Xiongdan Yang, Dongping Xie. Cloud Detection of Laser Altimetry Satellite ICESat-2 and the Related Algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(13): 131408
    Download Citation