• Journal of Innovative Optical Health Sciences
  • Vol. 2, Issue 2, 189 (2009)
CONGWU DU1、2、*, ZHONGCHI LUO3, MEI YU1, HELENE BENVENISTE1、2, MELISSA TULLY3, RUBING PAN4, and BRITTON CHANCE5
Author Affiliations
  • 1Medical Department, Brookhaven National Laboratory Upton, NY 11973-5000, USA
  • 2Department of Anesthesiology, SUNY at Stony Brook Stony Brook, NY 11794, USA
  • 3Department of Biomedical Engineering, SUNY at Stony Brook Stony Brook, NY 11794, USA
  • 4Department of Biology, University of Illinois at Urbana-Champaign Urbana, IL 61801
  • 5Department of Biophysics and Physical Chemistry University of Pennsylvania, Philadelphia, PA, 19104
  • show less
    DOI: Cite this Article
    CONGWU DU, ZHONGCHI LUO, MEI YU, HELENE BENVENISTE, MELISSA TULLY, RUBING PAN, BRITTON CHANCE. DETECTION OF Ca2+-DEPENDENT NEURONAL ACTIVITY SIMULTANEOUSLY WITH DYNAMIC CHANGES IN CEREBRAL BLOOD VOLUME AND TISSUE OXYGENATION FROM THE LIVE RAT BRAIN[J]. Journal of Innovative Optical Health Sciences, 2009, 2(2): 189 Copy Citation Text show less
    References

    [1] Breiter, H. C., Gollub, R. L., Weisskoff, R. M., Kennedy, D. N., Makris, N., Berke, J. D., Goodman, J. M., Kantor, H. L., Gastfriend, D. R., Riorden, J. P., Mathew, R. T., Rosen, B. R. and Hyman, S. E., “Acute effects of cocaine on human brain activity and emotion,” Neuron 19, 591–611 (1997).

    [2] Rissman, J., Gazzaley and D’Esposito,M., “Measuring functional connectivity during distinct stages of a cognitive task,” NeuroImage 23, 752–763 (2004).

    [3] Lee, J. H., Telang, F. W., Spring, C. S. and Volkow, N. D., “Abnormal brain activation to visual stimulation in cocaine abusers,” Life Sciences 73, 1953– 1961 (2003).

    [4] Gur, R. C., Ragland, J. D., Reivich, M., Greenberg, J.H.,Alavi, A. andGur,R. E., “Regional differences in the coupling between resting cerebral blood flow and metabolism may indicate action preparedness as a default state,” Cerebral Cortex 19, 375–382 (2009).

    [5] Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D. and Halgren, E., “Dynamic statistical parametricmapping: Combinig fMRI and MEG for high-resolution imaging of cortical activity,” Neuron 26, 55–67 (2000).

    [6] London, E. D., Bonson, K. R., Ernst, M. and Grant, S., “Brain imaging studies of cocaine abuse: Implications for medication development,” Critical Reviews in Neurobiology 13(3), 227–242 (1999).

    [7] Chance, B., Cohen, P., Jobsis, F. and Schoener, B., “Intracellular oxidation-reduction state in vivo,” Science 137, 499–508 (1962).

    [8] Baos, D. A., Franceschini, M. A., Dunn, A. K. and Strangman, G., “Noninvasive imaging of cerebral activation with diffuse optical tomography,” Chapter 8, in In Vivo Optical Imaging of Brain Function, ed. Frostig, R. D. (CRC Press, 2002).

    [9] Du, C., Koretsky, A. P., Izrailtyan, I. and Benveniste, H., “Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence,” J. Cereb. Blood Flow Metab. 25, 1078–1092 (2005).

    [10] Du, C., Yu, M., Volkow, N. D., Koretsky, A. P., Fowler, J. S. and Benveniste, H., “Cocaine increases the intracellular calcium concentration in brain independently of its cerebralovascular effects,” J. Neuroscience 26(45), 11522–11531 (2006).

    [11] Kudo, Y., Akita, K., Nakamura, T., Ogura, A., Makino, T., Tamagawa, A., Ozaki, K. and Miyakawa, A., “A single optical fiber fluorometric device for measurement of intracellular Ca2+ concentration: Its application to hippocampal neurons in vitro and in vivo,” Neuroscience 50, 619–625 (1992).

    [12] Takakashi, M. P., Sugiyama, M. and Tsumoto, T., “Contribution of NMDA receptors to tetanusinduced increase in postsynaptic Ca in visual cortex of young rats,” Neurosci. Res. 17, 229–239 (1993).

    [13] Chance, B., Schoener, B., Oshino, R., Itshak, F. and Nakase, Y., “Oxidation-reduced ratio studies in freeze-trapped samples,” J. Biol. Chem. 254, 4764– 4771 (1979).

    [14] Silva, A. C., Lee, S. P., Yang, G., Iadecola, C. and Kim, S. G., “Simultaneous blood oxygenation leveldependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat,” J. Cereb. Blood Flow Metab. 19(8), 871– 879 (1999).

    [15] Masamoto, K., Kim, T., Fukuda, M., Wang, P. and Kim, S. G., “Relationship between neural, vascular, and BOLD signals in isoflurane-anesthetized rat somatosensory cortex,” Cereb. Cortex 17(4), 942– 950 (2007).

    [16] Dunn, A. K., Devor, A., Dale, A. M. and Boas, D. A., “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279–290 (2005).

    [17] Benveniste, H., Hedlund, L. W. and Johnson, G. A., “Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy,” Stroke 23(5), 746–754 (1992).

    [18] Liu, K. F., Li, F., Tatlisumak, T., Garcia, J. H., Sotak, C. H., Fisher, M. and Fenstermacher, J. D., “Regional variations in the apparent diffusion coefficient and the intracellular distribution of water in rat brain during acute focal ischemia,” Stroke 32(8), 1897–1905 (2001).

    [19] Benveniste, H., J rgensen, M. B., Diemer, N. H. and Hansen, A. J., “Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia,” Acta. Neurol. Scand. 78(6), 529–536 (1988).

    [20] Du, C., MacGowan, G. A., Farkas, D. L. and Koretsky, A. P., “Calcium measurements in perfused mouse heart: Quantitating fluorescence and absorbance of Rhod2 by application of photon migration theory,” Biophys. J. 80(1), 549–561 (2001).

    [21] MacGowan, G. A., Du, C., Glonty, V., Suhan, J. P., Koretsky, A. P. and Farkas, D. L., “Rhod2-based measurements of intracellular calcium in the perfused mouse heart: Cellular and subcellular localization and response to positive inotropy,” J. Biomed. Opt. 6(1), 23–30 (2001).

    [22] Chance, B., Nioka, S., Sadi, S. and Li, C., “Oxygenation and blood concentration changes in human subject prefrontal activation by anagram solutions,” Adv. Exp. Med. Biol. 510, 397–401 (2003).

    [23] Sevick, E. M., Chance, B., Leigh, J., Nioka, S. and Maris, M., “Quantitation of time- and frequencyresolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195(2), 330–351 (1991).

    [24] Nioka, S., Luo, Q. and Chance, B., “Human brain functional imaging with reflectance CWS,” Adv. Exp. Med. Bio. 428, 237–242 (1997).

    [25] Culver, J. P., Durduran, T., Furuya, D., Cheung, C., Greenberg, J. H. and Yodh, A. G., “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).

    [26] Luo, Z. C., Yu, M., Smith, S. D., Kritzer, M., Du, C., Ma, Y., Volkow, N. D., Glass, P. S. and Benveniste, H., “The effect of intravenous lidocaine on brain activation during non-noxious and acute noxious stimulation of the forepaw: A functional magnetic resonance imaging study in the rat,” Anesthesia & Analgesia 108(1), 334–344 (2009).

    CONGWU DU, ZHONGCHI LUO, MEI YU, HELENE BENVENISTE, MELISSA TULLY, RUBING PAN, BRITTON CHANCE. DETECTION OF Ca2+-DEPENDENT NEURONAL ACTIVITY SIMULTANEOUSLY WITH DYNAMIC CHANGES IN CEREBRAL BLOOD VOLUME AND TISSUE OXYGENATION FROM THE LIVE RAT BRAIN[J]. Journal of Innovative Optical Health Sciences, 2009, 2(2): 189
    Download Citation