• Matter and Radiation at Extremes
  • Vol. 5, Issue 1, 018403 (2020)
N. Hirao1、a), S. I. Kawaguchi1, K. Hirose2、3, K. Shimizu4, E. Ohtani5, and Y. Ohishi1
Author Affiliations
  • 1Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
  • 2Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
  • 3Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
  • 4Center of Science and Technology Under Extremes Conditions, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
  • 5Department of Earth Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
  • show less
    DOI: 10.1063/1.5126038 Cite this Article
    N. Hirao, S. I. Kawaguchi, K. Hirose, K. Shimizu, E. Ohtani, Y. Ohishi. New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8[J]. Matter and Radiation at Extremes, 2020, 5(1): 018403 Copy Citation Text show less
    References

    [1] F. Thurel, H. Witsch, O. Hignette, M. Mezouar, C. Morawe, S. Bauchau, W. A. Crichton, P. Marion, F. Torrecillas, C. Borel, Y. Dabin, J. Chavanne, G. Blattmann. Development of a new state-of-the-art beamline optimized for monochromatic single-crystal and powder X-ray diffraction under extreme conditions at the ESRF. J. Synchrotron Radiat., 12, 659(2005).

    [2] P. J. Eng, S. R. Sutton, V. B. Prakapenka, M. L. Rivers, G. Shen. Facilities for high-pressure research with the diamond anvil cell at GSECARS. J. Synchrotron Radiat., 12, 642(2005).

    [3] Y. Meng, G. Shen, R. Hrubiak, R. Boehler, E. Rod. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team. Rev. Sci. Instrum., 86, 072201(2015).

    [4] Y. Ohishi, N. Hirao, M. Takata, N. Sata, K. Hirose. Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8. High Pressure Res., 28, 163(2008).

    [5] A. Ehnes, Z. Konôpková, J. Heuer, S. Petitgirard, A. Rothkirch, M. Wendt, E. E. McBride, K. Glazyrin, M. Tischer, H. Franz, J. Bednarčik, I. Schwark, H. Schulte-Schrepping, W. Morgenroth, H.-P. Liermann, Y. Bican, J. T. Delitz, T. Kracht. The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA III. J. Synchrotron Radiat., 22, 908(2015).

    [6] N. Sata, M. Murakami, K. Kawamura, Y. Ohishi, K. Hirose. Post-perovskite phase transition in MgSiO3. Science, 304, 855(2004).

    [7] H. Fujihisa, M. Sakashita, K. Honda, O. Simomura, S. Takeya, Y. Ohishi, Y. Gotoh, Y. Akahama, H. Yamawaki, H. Kawamura. O8 cluster structure of the epsilon phase of solid oxygen. Phys. Rev. Lett., 97, 085503(2006).

    [8] Y. Ohishi, S. Tateno, Y. Tatsumi, K. Hirose. The structure of iron in Earth’s inner core. Science, 330, 359(2010).

    [9] T. Seike, H. Ohashi, A. Kagamihata, H. Kishimoto, R. Kinjo, T. Tanaka, S. Yamamoto. Lightweight-compact variable-gap undulator with force cancellation system based on multipole monolithic magnets. Rev. Sci. Instrum., 88, 073302(2017).

    [10] T. Ishikawa, S. Matsuyama, K. Tono, H. Mimura, K. Yamauchi, H. Tanaka, M. Yabashi, T. Tanaka, K. Tamasaku, H. Ohashi, S. Goto. Optics for coherent X-ray applications. J. Synchrotron Radiat., 21, 976(2014).

    [11] M. Yabashi, T. Mochizuki, T. Ishikawa, Y. Yoneda, Y. Furukawa, K. Tamasaku, H. Yamazaki, S. Goto, S. K. Takeshita. SPring-8 standard x-ray monochromators. Proc. SPIE, 3773, 2(1999).

    [12] Y. Suzuki, Y. Kohmura, K. Tamasaku, H. Yamazaki, T. Ishikawa, A. Awaji, A. Barona, M. Yabashi, T. Mochizuki. Cryogenic cooling monochromators for the SPring-8 undualtor beamlines. Nucl. Instrum. Methods Phys. Res. A, 467-468, 647(2001).

    [13] Y. Terada, H. Ohashi, H. Yamazaki, T. Takeuchi, M. Takata, Y. Matsuzaki, S. Goto, T. Miura, H. Tajiri, T. Ishikawa, M. Tanaka, Y. Senba, H. Kishimoto, M. Yamamoto, Y. Shimizu, M. Suzuki. Improvement in stability of SPring-8 X-ray monochromators with cryogenic-cooled silicon crystals. J. Phys. Conf. Ser., 425, 052001(2013).

    [14] T. Ishikawa, A. Q. R. Baron, O. Shimomura, Y. Ohishi, M. Ishii. Refractive x-ray lens for high pressure experiments at SPring-8. Nucl. Instrum. Methods Phys. Res. A, 467-468, 962(2001).

    [15] E. Reznikova, J. Mohr, V. Nazmov, V. Saile, A. Somogyi. Planar sets of cross X-ray refractive lenses from SU-8 polymer. Proc. SPIE, 5539, 235-243(2004).

    [16] N. Hirao, A. K. Singh, Y. Ohishi, Y. Akahama. Equation of state of bcc-Mo by static volume compression to 410 GPa. J. Appl. Phys., 116, 223504(2014).

    [17] Y. Ohishi, T. Asakawa, H. Ohfuji, Y. Suzuki, T. Sakai, Y. Kuroda, T. Yagi, T. Kanemura, N. Hirao, T. Irifune. High-pressure generation using double stage micro-paired diamond anvils shaped by focused ion beam. Rev. Sci. Instrum., 86, 033905(2015).

    [18] N. Hirao, T. Sakai, T. Kunimoto, H. Kadobayashi, K. Hirose, Y. Ohishi, S. Kawaguchi-Imada, T. Yagi, T. Irifune, S. Tateno, H. Ohfuji. High pressure generation using double-stage diamond anvil technique: Problems and equations of state of rhenium. High Pressure Res., 38, 107(2018).

    [19] T. Matsuoka, J. S. Tse, Q. Li, Y. Ohishi, Y. Ma, S. Desgreniers. High pressure–low temperature phase diagram of barium: Simplicity versus complexity. Appl. Phys. Lett., 107, 221908(2015).

    [20] N. Takeshita, Y. Iwasa, D. Arčon, A. Y. Ganin, K. Prassides, Y. Ohishi, M. Takata, P. Jeglič, T. Takano, Y. Takabayashi, M. J. Rosseinsky. The disorder-free non-BCS superconductor Cs3C60 emerges from an antiferromagnetic insulator parent state. Science, 323, 1585(2009).

    [21] T. Watanuki, T. Kondo, O. Shimomura, M. Isshiki, T. Yagi. Construction of laser-heated diamond anvil cell system for in situ x-ray diffraction study at SPring-8. Rev. Sci. Instrum., 72, 1289(2001).

    [22] K. Hirose, Y. Ohishi, R. Sinmyo, K. Shimizu, K. Ohta, N. Sata, A. Yasuhara, S. Onoda. The electrical conductivity of post-perovskite in Earth’s D” layer. Science, 320, 89(2008).

    [23] K. Shimizu, Y. Ohishi, K. Ohta, Y. Kuwayama, K. Hirose. Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature, 534, 95(2016).

    [24] R. Howie, J. Binns, G. J. Ackland, E. Gregoryanz, M. Wang, P. Dalladay-Simpson. Formation of H2-rich iodine-hydrogen compounds at high pressure. Phys. Rev. B, 97, 024111(2018).

    [25] K. Hirose, N. Hirao, M. Murakami, Y. Ohishi, Y. Asahara. Development of in situ Brillouin spectroscopy at high pressure and high temperature with synchrotron radiation and infrared laser heating system: Application to the Earth’s deep interior. Phys. Earth Planet. Inter., 174, 282(2009).

    [26] Y. Ohishi, M. Murakami, N. Hirao, K. Hirose. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature, 485, 90(2012).

    [27] Y. Kudo, K. Hirose, Y. Asahara, H. Ozawa, Y. Ohishi, N. Hirao, M. Murakami. Sound velocity measurements of CaSiO3 perovskite to 133 GPa and implications for lowermost mantle seismic anomalies. Earth Planet. Sci. Lett., 349-350, 1(2012).

    [28] K. Hirose, N. Hirao, Y. Asahara, Y. Ohishi, H. Ozawa, M. Murakami. Acoustic velocity measurements for stishovite across the post-stishovite phase transition under deviatoric stress: Implications for the seismic features of subducting slabs in the mid-mantle. Am. Mineral., 98, 2053(2013).

    [29] H. Kawamura, Y. Akahama. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: Method for pressure determination in the multimegabar pressure range. J. Appl. Phys., 96, 3748(2004).

    [30] Y. Akahama, H. Kawamura. Pressure calibration of diamond anvil Raman gauge to 310 GPa. J. Appl. Phys., 100, 043516(2006).

    [31] Y. Akahama, Y. Ohishi, N. Hirao, K. Takemura, M. Nishimura, H. Kawamura. Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa. Phys. Rev. B, 82, 060101(R)(2010).

    [32] T. Sugimoto, Y. Ohishi, H. Fujihisa, T. Maekawa, N. Hirao, Y. Akahama. High-pressure phase diagram of O2 and N2 binary system: formation of kagome-lattice of O2. J. Phys. Conf. Ser., 500, 182001(2014).

    [33] Y. Ohishi, H. Fujihisa, Y. Akahama, N. Hirao, H. Yamashita, D. Ishihara. Phase stability and magnetic behavior of hexagonal phase of N2–O2 system with Kagome lattice under high pressure and low temperature. Phys. Rev. B, 94, 064104(2016).

    [34] M. Sakata, M. Einaga, K. Shimizu, I. A. Troyan, M. I. Eremets, N. Hirao, T. Ishikawa, A. P. Drozdov, Y. Ohishi. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys., 12, 835(2016).

    [35] T. Matsuoka, K. Shimizu. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature, 458, 186(2009).

    [36] Y. Nakamoto, K. Mukai, M. Sakata, K. Takahama, N. Hirao, K. Ichimaru, Y. Ohishi, T. Matsuoka, K. Ohta, K. Shimizu. Pressure-induced reentrant metallic phase in lithium. Phys. Rev. B, 89, 144103(2014).

    [37] K. Shimizu, T. Matsuoka, Y. Nakamoto, Y. Ohishi, M. Sakata. Superconducting state of Ca-VII below a critical temperature of 29 K at a pressure of 216 GPa. Phys. Rev. B, 83, 220512(R)(2011).

    [38] H. Enoki, M. Seto, K. Sakaki, Y. Nakamura, N. Hirao, R. Masuda, T. Mitsui, Y. Ohishi. Development of an energy-domain 57Fe-Mössbauer spectrometer using synchrotron radiation and its application to ultrahigh-pressure studies with a diamond anvil cell. J. Synchrotron Radiat., 16, 723(2009).

    [39] L. Dubrovinsky, A. I. Chumakov, V. Potapkin, J.-P. Celse, G. V. Smirnov, R. Rüffer, C. McCammon. The 57Fe synchrotron Mössbauer source at the ESRF. J. Synchrotron Radiat., 19, 559(2012).

    [40] N. Suzuki, R. Masuda, S. Nakano, M. Hamada, Y. Ohishi, E. Ohtani, T. Mitsui, N. Hirao, F. Maeda, S. Kamada. Electronic properties and compressional behavior of Fe–Si alloys at high pressure. Am. Mineral., 103, 1959(2018).

    [41] N. Hirao, E. Ohtani, C. McCammon, F. Maeda, S. Kamada, R. Masuda, M. Miyahara, T. Mitsui. Spin state and electronic environment of iron in basaltic glass in the lower mantle. Am. Mineral., 102, 2106(2017).

    [42] H. Kitamura, T. Tanaka. SPECTRA: A synchrotron radiation calculation code. J. Synchrotron Radiat., 8, 1221(2001).

    [43] This work was performed at the SPring-8 facility with the approval of the Japan Synchrotron Radiation Research Institute (Proposals Nos. 2009A2021, 2009B2131, 2010A1232, 2010A1966, 2014A1910, 2014A1911, 2014B2059, 2015A2066, 2015B2001, 2016A1846, 2016A1853, 2016A1854, 2016B1960, 2017A1870, 2017B1986, 2017B1987, and 2018A2073).

    N. Hirao, S. I. Kawaguchi, K. Hirose, K. Shimizu, E. Ohtani, Y. Ohishi. New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8[J]. Matter and Radiation at Extremes, 2020, 5(1): 018403
    Download Citation