• Laser & Optoelectronics Progress
  • Vol. 58, Issue 5, 0527001 (2021)
Tianxiong Wu, Yunxia Li, Wen Meng, Junhui Wang, Jiahua Wei*, and Jie Tang
Author Affiliations
  • Information and Navigation College, Air Force Engineering University, Xi'an , Shaanxi 710000, China
  • show less
    DOI: 10.3788/LOP202158.0527001 Cite this Article Set citation alerts
    Tianxiong Wu, Yunxia Li, Wen Meng, Junhui Wang, Jiahua Wei, Jie Tang. Enhancement of Quantum Teleportation Fidelity Based on Partial Memory Channel[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0527001 Copy Citation Text show less
    References

    [1] Bennett C H, Brassard G, Crépeau C et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70, 1895-1899(1993).

    [2] Lu F. Controllable quantum entanglement based on cavity structure. Laser & Optoelectronics Progress, 56, 042701(2019).

    [3] Li W L, Li C F, Guo G C. Probabilistic teleportation and entanglement matching. Physical Review A, 61, 034301(2000).

    [4] Chen X B, Du J Z, Wen Q Y et al. Probabilistic teleportation of multi-particle partially entangled state. Chinese Physics B, 17, 771-777(2008).

    [5] Yan F L, Yan T. Probabilistic teleportation via a non-maximally entangled GHZ state. Chinese Science Bulletin, 55, 902-906(2010).

    [6] Zhou P, Li X H, Deng F G et al. Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. Journal of Physics A: Mathematical and Theoretical, 40, 13121-13130(2007).

    [7] Man Z X, Xia Y J, An N B. Genuine multiqubit entanglement and controlled teleportation. Physical Review A, 75, 052306(2007).

    [8] Han X P, Liu J M. Amplitude damping effects on controlled teleportation of a qubit by a tripartite W state. Physica Scripta, 78, 015001(2008).

    [9] Zha X W, Zou Z C, Qi J X et al. Bidirectional quantum controlled teleportation via five-qubit cluster state. International Journal of Theoretical Physics, 52, 1740-1744(2013).

    [10] Li Y H, Nie L P. Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. International Journal of Theoretical Physics, 52, 1630-1634(2013).

    [11] Bouwmeester D, Mattle K, Pan J W et al. Experimental quantum teleportation of arbitrary quantum states. Applied Physics B: Lasers and Optics, 67, 749-752(1998).

    [12] Ren J G, Xu P, Yong H L et al. Ground-to-satellite quantum teleportation. Nature, 549, 70-73(2017).

    [13] Oh S, Lee S, Lee H W. Fidelity of quantum teleportation through noisy channels. Physical Review A, 66, 022316(2002).

    [14] Qiu L, Tang G, Yang X Q et al. Enhancing teleportation fidelity by means of weak measurements or reversal. Annals of Physics, 350, 137-145(2014).

    [15] Xu X M, Cheng L Y, Liu A et al. Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Information Processing, 14, 4147-4162(2015).

    [16] Macchiavello C, Palma G M. Entanglement-enhanced information transmission over a quantum channel with correlated noise. Physical Review A, 65, 050301(2002).

    [17] Karpov E, Daems D, Cerf N J. Entanglement-enhanced classical capacity of quantum communication channels with memory in arbitrary dimensions. Physical Review A, 74, 032320(2006).

    [18] Karimipour V, Memarzadeh L. Transition behavior in the capacity of correlated noisy channels in arbitrary dimensions. Physical Review A, 74, 032332(2006).

    [19] Zhang R, Liu W T, Wang J et al. Entanglement in quasi-periodic evolution of quantum walks. Laser & Optoelectronics Progress, 56, 182701(2019).

    [20] D'Arrigo A, Benenti G, Falci G. Quantum capacity of dephasing channels with memory. New Journal of Physics, 9, 310(2007).

    [21] D'Arrigo A, Benenti G, Falci G et al. Classical and quantum capacities of a fully correlated amplitude damping channel. Physical Review A, 88, 042337(2013).

    [22] Arshed N, Toor A H. Entanglement-assisted classical capacity of quantum channels with correlated noise. Physical Review A, 73, 014304(2006).

    [23] Benenti G, D'Arrigo A, Falci G. Enhancement of transmission rates in quantum memory channels with damping. Physical Review Letters, 103, 020502(2009).

    [24] Zhang Z H, Sun M. Enhanced deterministic joint remote state preparation under Pauli channels with memory. Physica Scripta, 95, 055107(2020).

    [25] Lin J. Preparing bell state by using dissipative process in directly coupled cavities. Laser & Optoelectronics Progress, 56, 242703(2019).

    [26] Zhai S Q, Yuan N, Li Q. Asymmetric bipartite EPR steering swapping characteristics of continuous variable. Acta Optica Sinica, 40, 0427001(2020).

    [27] Nielsen M, Chuang I. Quantum computation and quantum information(2000).

    [28] Leditzky F, Leung D, Smith G. Quantum and private capacities of low-noise channels. Physical Review Letters, 120, 160503(2018).

    [29] Bausch J, Leditzky F. Error thresholds for arbitrary Pauli noise. (2019-10-01)[2020-04-17]. https://arxiv.org/abs/1910.00471

    Tianxiong Wu, Yunxia Li, Wen Meng, Junhui Wang, Jiahua Wei, Jie Tang. Enhancement of Quantum Teleportation Fidelity Based on Partial Memory Channel[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0527001
    Download Citation