• Opto-Electronic Engineering
  • Vol. 47, Issue 5, 200024 (2020)
Chen Sichao1、2, Du Lianghui1、3, and Zhu Liguo1、3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.200024 Cite this Article
    Chen Sichao, Du Lianghui, Zhu Liguo. THz wave computational ghost imaging: principles and outlooks[J]. Opto-Electronic Engineering, 2020, 47(5): 200024 Copy Citation Text show less
    References

    [1] Erkmen B I, Shapiro J H. Ghost imaging: from quantum to classical to computational[J]. Advances in Optics and Photonics, 2010, 2(4): 405–450.

    [2] Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light[J]. Nature, 1956, 177(4497): 27–29.

    [3] Brown R H, Twiss R Q. A test of a new type of stellar interferometer on sirius[J]. Nature, 1956, 178(4541): 1046–1048.

    [4] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429–R3432.

    [5] Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 2001, 87(12): 123602.

    [6] Bennink R S, Bentley S J, Boyd R W. "Two-Photon" coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.

    [7] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.

    [8] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83–91.

    [9] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509.

    [10] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406–5425.

    [11] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306.

    [12] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13): 131110.

    [13] Bennink R S, Bentley S J, Boyd R W, et al. Quantum and classical coincidence imaging[J]. Physical Review Letters, 2004, 92(3): 033601.

    [14] Zhang P L, Gong W L, Shen X, et al. Improving resolution by the second-order correlation of light fields[J]. Optics Letters, 2009, 34(8): 1222–1224.

    [15] Harwit M, Sloane N J A. Hadamard Transform Optics[M]. New York: Academic Press, 1979.

    [16] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97–105.

    [17] Meng K, Chen T N, Chen T, et al. Terahertz pulsed spectroscopy of paraffin-embedded brain glioma[J]. Journal of Biomedical Optics, 2014, 19(7): 077001.

    [18] Zou Y, Li J, Cui Y Y, et al. Terahertz spectroscopic diagnosis of myelin deficit brain in mice and rhesus monkey with chemometric techniques[J]. Scientific Reports, 2017, 7(1): 5176.

    [19] Zou Y, Liu Q, Yang X, et al. Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy[J]. Biomedical Optics Express, 2018, 9(1): 14–24.

    [20] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716–1718.

    [21] Tang P R, Li J, Du L H, et al. Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure[J]. Optics Express, 2018, 26(23): 30655–30666.

    [22] Van Exter M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor[J]. Optics Letters, 1989, 14(20): 1128–1130.

    [23] Nakajima S, Hoshina H, Yamashita M, et al. Terahertz imaging diagnostics of cancer tissues with a chemometrics technique[J]. Applied Physics Letters, 2007, 90(4): 041102.

    [24] Koenig S, Lopez-Diaz D, Antes J, et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 2013, 7(12): 977–981.

    [25] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 2016, 10(6): 371–379.

    [26] Tang H, Zhu L G, Zhao L, et al. Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching[J]. ACS Nano, 2012, 6(9): 7814–7819.

    [27] Xiao Y, Zhai Z H, Shi Q W, et al. Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy[J]. Applied Physics Letters, 2015, 107(3): 031906.

    [28] Zhai Z H, Zhu H F, Shi Q, et al. Enhanced photoresponses of an optically driven VO2-based terahertz wave modulator near percolation threshold[J]. Applied Physics Letters, 2018, 113(23): 231104.

    [29] Zhai Z H, Chen S C, Du L H, et al. Giant impact of self-photothermal on light-induced ultrafast insulator-to-metal transition in VO2 nanofilms at terahertz frequency[J]. Optics Express, 2018, 26(21): 28051–28066.

    [30] Karpowicz N, Zhong H, Zhang C L, et al. Compact continuous-wave subterahertz system for inspection applications[J]. Applied Physics Letters, 2005, 86(5): 054105.

    [31] Charron D M, Ajito K, Kim J Y, et al. Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging[J]. Analytical Chemistry, 2013, 85(4): 1980–1984.

    [32] Yang X, Zhao X, Yang K, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10): 810–824.

    [33] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105.

    [34] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 2013, 21(10): 12507–12518.

    [35] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8): 605–609.

    [36] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

    [37] Stantchev R I, Sun B Q, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2016, 2(6): e1600190.

    [38] Stantchev R I, Phillips D B, Hobson P, et al. Compressed sensing with near-field THz radiation[J]. Optica, 2017, 4(8): 989–992.

    [39] Aβmann M, Bayer M. Compressive adaptive computational ghost imaging[J]. Scientific Reports, 2013, 3: 1545.

    [40] Green M A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients[J]. Solar Energy Materials and Solar Cells, 2008, 92(11): 1305–1310.

    [41] Chen S C, Du L H, Meng K, et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 2019, 44(1): 21–24.

    [42] Liu K, Lee S, Yang S, et al. Recent progresses on physics and applications of vanadium dioxide[J]. Materials Today, 2018, 21(8): 875–896.

    [43] Cavalleri A, Tóth C, Siders C W, et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition[J]. Physical Review Letters, 2001, 87(23): 237401.

    [44] Zhao J P, E Y W, Williams K, et al. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding[J]. Light: Science & Applications, 2019, 8(1): 55.

    [45] Hornett S M, Stantchev R I, Vardaki M Z, et al. Subwavelength terahertz imaging of graphene photoconductivity[J]. Nano Letters, 2016, 16(11): 7019–7024.

    [46] Olivieri L, Totero Gongora J S, Pasquazi A, et al. Time-resolved nonlinear ghost imaging[J]. ACS Photonics, 2018, 5(8): 3379–3388.

    [47] Olivieri L, Gongora J S T, Peters L, et al. Hyperspectral terahertz microscopy via nonlinear ghost imaging[J]. Optica, 2020, 7(2): 186–191.

    Chen Sichao, Du Lianghui, Zhu Liguo. THz wave computational ghost imaging: principles and outlooks[J]. Opto-Electronic Engineering, 2020, 47(5): 200024
    Download Citation