• Journal of Inorganic Materials
  • Vol. 35, Issue 12, 1295 (2020)
Shiyou ZHENG, Fei DONG, Yuepeng PANG, Pan HAN, and Junhe YANG
Author Affiliations
  • School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.15541/jim20200134 Cite this Article
    Shiyou ZHENG, Fei DONG, Yuepeng PANG, Pan HAN, Junhe YANG. Research Progress on Nanostructured Metal Oxides as Anode Materials for Li-ion Battery[J]. Journal of Inorganic Materials, 2020, 35(12): 1295 Copy Citation Text show less
    (a, b) SEM images of SnO2/C-NTs; (c) Cycling performance at 500 mA/g, and (d) rate capabilities of SnO2-NTs and SnO2/C-NTs[23]
    1. (a, b) SEM images of SnO2/C-NTs; (c) Cycling performance at 500 mA/g, and (d) rate capabilities of SnO2-NTs and SnO2/C-NTs[23]
    (a) Illustration of the synthesis principles of ultrafine SnO2 NPs immobilized in the mesopore channels of mesoporous carbon; (b) Cycle performance at 200 mA/g between 0.005 and 3 V, and (c) rate performance of electrodes based on different SnO2 content[31]
    2. (a) Illustration of the synthesis principles of ultrafine SnO2 NPs immobilized in the mesopore channels of mesoporous carbon; (b) Cycle performance at 200 mA/g between 0.005 and 3 V, and (c) rate performance of electrodes based on different SnO2 content[31]
    (a) SEM image, and (b) cycle performance at 100 mA/g of CuO NRAs[42]
    3. (a) SEM image, and (b) cycle performance at 100 mA/g of CuO NRAs[42]
    (a) Schematic illustration of the synthesis of hollow CuO@NCS composites; (b) Cycle performance of CuO@NCS at 100 mA/g[46]
    4. (a) Schematic illustration of the synthesis of hollow CuO@NCS composites; (b) Cycle performance of CuO@NCS at 100 mA/g[46]
    TEM images of (a) Fe2O3-graphene particle-on-sheet composite, and (b-d) Fe2O3-graphene sheet-on-sheet composite[57]
    5. TEM images of (a) Fe2O3-graphene particle-on-sheet composite, and (b-d) Fe2O3-graphene sheet-on-sheet composite[57]
    (a) Illustration for the synthetic procedure, (b) TEM image, and (c) rate capabilities of Fe3O4@N-HPCNs[63]
    6. (a) Illustration for the synthetic procedure, (b) TEM image, and (c) rate capabilities of Fe3O4@N-HPCNs[63]
    (a) Structure diagrams of the amorphous porous CoSnO3/Au composite nanocubes; Cycle performance of the amorphous porous CoSnO3/Au composite nanocubes at (b) 0.2 and (c) 5 A/g[65]
    7. (a) Structure diagrams of the amorphous porous CoSnO3/Au composite nanocubes; Cycle performance of the amorphous porous CoSnO3/Au composite nanocubes at (b) 0.2 and (c) 5 A/g[65]
    (a) Schematic illustration for the synthetic procedure, (b) TEM image, and (c) rate capabilities of spinel ZnxCo3-xO4 hollow polyhedron[79]
    8. (a) Schematic illustration for the synthetic procedure, (b) TEM image, and (c) rate capabilities of spinel ZnxCo3-xO4 hollow polyhedron[79]
    Materials structureFirst cyclic capacity/(mAh∙g-1) (Current density/(A∙g-1))Coulombic efficiencyCycling performance/ (mAh∙g-1) (Current density/ (A∙g-1), cycle number)Rate performance/(mAh∙g-1) (Current density/(A∙g-1))Ref.
    SnO2 NPs (5~20 nm)1310 (0.1)69%800 (0.1, 100)850 (1); 800 (2)[22]
    SnO2/C-NT (15 nm)483 (0.5)51%596 (0.5, 200)683 (1); 550 (2)[23]
    SnO2 nanosheets (7.4 nm)1338 (0.1)55%763 (0.1, 300)460 (1); 280 (2)[24]
    SnO2 HS (50 nm)736 (0.1)47%540 (0.1, 50)550 (1); 422 (2)[26]
    SnO2/C (50~100 nm)998 (0.1)69%750 (0.1, 100)413 (1); 325 (2)[28]
    C-SnO2/CNT (7 nm)1373 (1)52%950 (1, 100)1100 (1); 950 (2)[29]
    SnO2@G-SWCNT (7 nm)1007 (0.1)53%785 (0.1, 100)510 (1); 426 (2)[30]
    SnO2@CMK-5 (4~5 nm)694 (0.2)71%1039 (0.1, 100)770 (1)[31]
    SnO2/C (2.8 nm)899 (1.4)44%560 (1.4, 100)700 (1.4); 538 (2.8)[32]
    CuO spheres (400 nm)590 (0.45)66%400 (0.45, 50)-[34]
    CuO octahedra (5 nm)506 (0.5)70%785 (0.5, 50)488 (1); 370 (2)[40]
    CuO labyrinths (20 nm)645 (0.1)66%330 (1, 100)340 (1.3); 255 (3.4)[41]
    CuO NRAs (2~3 μm)751 (0.1)56%671 (0.1, 150)367 (1); 300 (2)[42]
    CuO spheres (10 nm)552 (0.67)55%750 (0.67, 350)650 (1.3); 600 (3.4)[43]
    CuO/MWCNT (10 nm)462 (0.07)69%650 (0.07, 100)590 (1.3); 590 (2)[44]
    Cu2O/CuO/rGO (500 nm)375 (0.3)75%570 (0.3, 100)350 (1.3); 250 (2.7)[45]
    Cu@NCSs (45 nm)909 (0.5)62%602 (0.5, 200)760 (1); 570 (2)[46]
    Graphene/Fe2O3 (40 nm)1074 (0.1)65%800 (0.1, 50)-[57]
    Fe2O3/CA (5~50 nm)836 (0.1)55%635 (0.1, 100)652 (0.4); 546 (0.8)[58]
    RG-O/Fe2O3 (60 nm)1219 (0.1)72%1027 (0.1, 50)970 (0.4); 760 (0.8)[59]
    Fe3O4@PCFs (10~60 nm)1014 (0.2)72%920 (0.2, 80)677 (1); 523 (2)[51]
    Fe3O4/PPy (200 nm)493 (1)89%554 (1, 100)500 (1); 330 (2)[61]
    Fe3O4-CNTs (50~100 nm)845 (0.05)77%702 (0.05, 50)-[62]
    Fe3O4@N-HPCNs (6 nm)521 (0.1)54%1240 (0.1, 100)700 (1); 600 (2)[63]
    CoMoO4 NPs (2~10 nm)1051 (0.2)72%1185 (0.2, 100)900 (1); 850 (2)[77]
    CoSnO3/Au cube (70 nm)1693 (0.2)68%1615 (0.2, 100)1425 (1); 1289 (2)[65]
    NiFe2O4 NPs (20 nm)1177 (0.1)79%1390 (0.1, 20)823 (1); 725 (3)[70]
    ZnxCo3-xO4 (10 nm)967 (0.1)76%990 (0.1, 50)1020 (0.9); 988 (2.7)[79]
    NixCo3-xO4 (40 nm)1133 (0.1)70%1109 (0.1, 100)864 (1); 728 (2)[80]
    Table 1. Structures and comprehensive electrochemical performances of different metal oxide anode materials
    Shiyou ZHENG, Fei DONG, Yuepeng PANG, Pan HAN, Junhe YANG. Research Progress on Nanostructured Metal Oxides as Anode Materials for Li-ion Battery[J]. Journal of Inorganic Materials, 2020, 35(12): 1295
    Download Citation