• Acta Optica Sinica
  • Vol. 29, Issue 7, 1778 (2009)
Peng Yufeng1、*, Zhang Wenjin1, and Cheng Zuhai2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article Set citation alerts
    Peng Yufeng, Zhang Wenjin, Cheng Zuhai. Analyses of Transmission Characteristics of Rubidium Faraday Optical Filter at 532 nm in Intermediate Fields[J]. Acta Optica Sinica, 2009, 29(7): 1778 Copy Citation Text show less
    References

    [1] Yeh P. Dispersive magnetooptic filters[J]. Appl. Opt., 1982, 21(11):2069~2075

    [2] Yin B, Shay T M. Theoretical model for a Faraday anomalous dispersion optical filter[J].Opt. Lett., 1991, 16(20):1617~1619

    [3] Zhang Ling, Li Yimin, Tang Junxiong. General method of calculatig the transmission spectrum of faraday anomalous dispersion optical filter[J]. Acta Optica Sinica,1999, 19(7):988~992

    [4] Hu Zhilin, Sun Xianping, Zeng Xizhi et al.. Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field[J].Opt. Comm., 1993, 101(3~4):175~178

    [5] Peng Yufeng, Tang Junxiong, Wang Qingji et al.. Studies on properties of Faraday anomalous dispersion optical filter at Rb D2 lins in strong magnetic fields[J]. Acta Optica Sinica,1993, 13(5):419~424

    [6] He Zhusong, Zhang Yundong, Liu Shuangqiang et al.. A rubidium laser induced dispersion optical filter at 775.9 nm[J].Chin. J. Laser, 2008,35(4):488~490

    [7] Zhang Yundong, Jia Xiaoling, Bi Yong et.al.. Filtering feature of potassium faraday dispersion optical filter[J]. Acta Optica Sinica,2001, 21(11):1377~1380

    [8] Jia Xiaoling, Zhang Yundong, Wang Qi et al.. The filtering behaviour of potassium Faraday anomalous dispersion optical filter in a strong magnetic field[J].Acta Physica Sinica, 2002, 51(11):2489~2494

    [9] Wang Qi, Jia Xiaoling, Zhang Yundong et.al.. A study on the potassium tunable ultra-narrow bandwidth optical filter at 532 nm[J]. Acta Physica Sinica, 2003, 52(5):1151~1156

    [10] Peng Yufeng, Cheng Zuhai, Qiu Junlin et al.. Transmission properties of Faraday anomalous dispersion optical filter at 532 nm[J]. Spectroscopy and Spectral Analysis,2001, 21(3):294~297

    [11] Peng Yufeng. Transmission characteristics of an excited-state Faraday optical filter at 532 nm[J]. J. Phys. B., 1997, 30(22):5123~5129

    [12] Liang Bo, Zhu Hai, Cheng Weibiao. Simulation of laser communication channel from atmosphere to ocean[J].Acta Optica Sinica, 2007, 27(7):1166~1172

    [13] Breit G, Rabi I I. Measurement of nuclear spin[J]. Phys. Rev., 1931, 38(11):2082~2083

    [14] Radzig A A, Smirnov B M. Reference Data on Atoms, Molecules, and Ions[M]. Moscow: Atomizdat Publishing House, 1980, 222~223

    [15] Huang Shizhong. Theory of atomic structure[M]. Hefei: University of Science and Technology of China Press, 2005, 281~282

    [16] Yariv. A. Quantum electronics[M]. Liu Songhao Transl. Shanghai: Shanghai Science and Technology Press,1983, 171~173

    [17] Corney Alan. Atomic and Laser spectroscopy[M]. Oxford: Clarendon Press, 1977, 314

    [18] Holstein T. Imprisonment of resonance radiation in gases.Ⅱ[J]. Phys. Rev., 1951, 83(6):1159~1168

    [19] Zhang Liang, Tang Junxiong. Experimental study on optimization of the working conditions of excited state Faraday filter[J]. Opt. Comm., 1998, 152(4~6): 275~279

    [20] Billmers R I, Gayen S K, Squicciarini M F et al.. Experimental demonstration of an excited-state Faraday filter operating at 532 nm[J]. Opt. Lett., 1995, 20(1):106~108

    Peng Yufeng, Zhang Wenjin, Cheng Zuhai. Analyses of Transmission Characteristics of Rubidium Faraday Optical Filter at 532 nm in Intermediate Fields[J]. Acta Optica Sinica, 2009, 29(7): 1778
    Download Citation