[1] S ARCHANAr, Y KUMAR K, N VINUTH T. Superb adsorption capacity of hydrothermally synthesized copper oxide and nickel oxide nanoflakes towards anionic and cationic dyes.. J. Sci.: Adv. Mater. Devices, 2, 183-191(2017).
[2] J JIN Y, N LI, Q LIU H. Highly efficient degradation of dye pollutants by Ce-doped MoO3 catalyst at room temperature. Dalton Trans., 43, 12860-12870(2014).
[3] A BHATNAGAR, S HOKKANEN, M SILLANPAA. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res., 91, 156-173(2016).
[4] Y HAN X, L NING G, P TIAN. Synthesis of porous hierarchical MgO and its superb adsorption properties. ACS Appl. Mater. Interfaces, 5, 12411-12418(2013).
[5] J QIN, X QIU F, S RONG X. A facile hydrothermal synthesis, adsorption kinetics and isotherms to Congo Red azo-dye from aqueous solution of NiO/grapheme nanosheets adsorbent.. J. Indust. Eng. Chem., 26, 354-363(2015).
[6] X SONG L, Y TENG, K YANG Z. Nickel oxide nanoflowers: formation, structure, magnetic property and adsorptive performance towards organic dyes and heavy metal ions. J. Mater. Chem. A, 1, 8731-8736(2013).
[7] M SONG J, J ZHANG, Z ZHU D. Efficient one-pot synthesis of hierarchical flower-like
[8] X LIU B, S WANG J, S WU J. Controlled fabrication of hierarchical WO3 hydrates with excellent adsorption performance. J. Mater. Chem. A, 2, 1947-1954(2014).
[9] H LEE J. Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators, B, 140, 319-336(2009).
[10] Z FENG P, Y LIU, Z WANG. Novel fabrication and enhanced photocatalytic MB degradation of hierarchical porous monoliths of MoO3 nanoplates. Sci. Rep., 7, 1845-1854(2017).
[11] L CHENG X, X SONG X, M WANG. Highly selective and efficient adsorption dyes selfassembled by 3D hierarchical architecture of molybdenum oxide. RSC Adv., 5, 85248-85255(2015).
[12] L CHENG X, L SUI L, F ZHANG X. Au-Loaded hierachical MoO3 hollow spheres with enhanced gas sensing performance for the detection of BTX (benzene, toluene, and xylene) and the sensing mechanism.. ACS Appl. Mater. Interfaces, 9, 1661-1670(2017).
[13] J LI, P SONG, J ZHANG. Template-assisted synthesis of hierarchical MoO3 microboxes and their high gas-sensing performance. Sens. Actuators, B, 249, 458-466(2017).
[14] S WU C, C XIA Y, Y ZHAO N. hierarchical nanostructures for excellent performance ethanol sensor. Mater. Lett., 171, 117-120(2016).
[15] P SONG, H YAN H, S ZHANG. Facile fabrication and enhanced gas sensing properties of hierarchical MoO3 nanostructures. RSC Adv., 5, 72728-72735(2015).
[16] C MA X, T WANG S, G ZHANG Y. Hydrothermal route to single crystalline
[17] Y LU Z, Y YU X, X ZHANG G. Green sacrificial template fabrication of hierarchical MoO3 nanostructures. CrystEngComm, 16, 3935-3939(2014).
[18] Q CAO H, L LIANG R, D QIAN. MoO3 nanowires as electrochemical pseudocapacitor materials. Chem. Commun., 47, 10305-10307(2011).
[19] B JIAN J, L LIU J, J PENG S. Facile synthesis of
[20] L CHEN D, N LIU M, L YIN. Single-crystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance. J. Mater. Chem., 21, 9332-9342(2011).
[21] Y LI, F WANG G, Y XU B.
[22] S LEI C, C ZHU B, F ZHU X. Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water. J. Colloid Inter. Sci., 466, 238-246(2016).
[23] M GUO Y, M MA X, P ZHANG P. Size-controlled synthesis of hierarchical NiO hollow microspheres. Size-controlled synthesis of hierarchical NiO hollow microspheres and the adsorption for Congo red in water. Chem. Eng. J., 190, 188-195(2012).
[24] , S DHANAVEL.
[25] L JIA Y, B JIA Z, Y MA. Facile synthesize
[26] F HAN Q, J LI, H LIU X. Formation of WO3 nanotube-based bundles directed by NaHSO4 and its application in water treatment. J. Mater. Chem. A, 1, 1246-1253(2013).
[27] L WANG S, H XIE S, J ZHU. Hexagonal single crystal growth of WO3 nanorods along a [110] axis with enhanced adsorption capacity. Chem. Commun., 47, 4403-4405(2011).
[28] S JEON, K YONG. Morphology-controlled synthesis of highly adsorptive tungsten oxide nanostructures and their application to water treatment. J. Mater. Chem., 20, 10146-10151(2010).
[29] M CUNHA A, C PERES E, C SLAVIERO J. Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. J. Environ. Chem. Eng., 6, 649-659(2018).
[30] K GARG V, K GUPTA R, J SAINI. Removal of methylene blue from aqueous solution by Fe3O4@Ag/SiO2 nanospheres: synthesis, characterization and adsorption performance. J. Mol. Liq., 250, 413-422(2018).