• Laser & Optoelectronics Progress
  • Vol. 62, Issue 2, 0228001 (2025)
Jiale Fan*, Qiang Li, Ruifeng Zhang, and Xin Guan
Author Affiliations
  • School of Microelectronics, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP241023 Cite this Article Set citation alerts
    Jiale Fan, Qiang Li, Ruifeng Zhang, Xin Guan. Spatial Spectral VAFormer Graph Convolution Hyperspectral Image Super-Resolution Network[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0228001 Copy Citation Text show less
    References

    [1] Hong D F, He W, Yokoya N et al. Interpretable hyperspectral artificial intelligence: when nonconvex modeling meets hyperspectral remote sensing[J]. IEEE Geoscience and Remote Sensing Magazine, 9, 52-87(2021).

    [2] Irmak H, Akar G B, Yuksel S E. A MAP-based approach for hyperspectral imagery super-resolution[J]. IEEE Transactions on Image Processing, 27, 2942-2951(2018).

    [3] Deng C W, Luo X S, Wang W Z. Multiple frame splicing and degradation learning for hyperspectral imagery super-resolution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 8389-8401(2022).

    [4] Wang S Z, Guan X, Li Q. Hyperspectral image super-resolution network of local-global attention feature reuse[J]. Acta Optica Sinica, 43, 2115001(2023).

    [5] Cao X H, Lian Y S, Liu Z L et al. Hyperspectral image super-resolution based on the transfer of both spectra and multi-level features[J]. Optics Letters, 47, 3431-3434(2022).

    [6] Lim B, Son S, Kim H et al. Enhanced deep residual networks for single image super-resolution[C], 1132-1140(2017).

    [7] Li Q, Wang Q, Li X L. Mixed 2D/3D convolutional network for hyperspectral image super-resolution[J]. Remote Sensing, 12, 1660(2020).

    [8] Li Q, Wang Q, Li X L. Exploring the relationship between 2D/3D convolution for hyperspectral image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 8693-8703(2021).

    [9] Li Q, Yuan Y, Jia X P et al. Dual-stage approach toward hyperspectral image super-resolution[J]. IEEE Transactions on Image Processing, 31, 7252-7263(2022).

    [10] Palsson F, Sveinsson J R, Ulfarsson M O. Multispectral and hyperspectral image fusion using a 3-D-convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 14, 639-643(2017).

    [11] Ding M, Fu X, Huang T Z et al. Hyperspectral super-resolution via interpretable block-term tensor modeling[J]. IEEE Journal of Selected Topics in Signal Processing, 15, 641-656(2021).

    [12] Wang X H, Chen J, Richard C. Hyperspectral image super-resolution with deep priors and degradation model inversion[C], 2814-2818(2022).

    [13] Ye F, Wu Z B, Jia X P et al. Bayesian nonlocal patch tensor factorization for hyperspectral image super-resolution[J]. IEEE Transactions on Image Processing, 32, 5877-5892(2023).

    [14] Hu J F, Huang T Z, Deng L J et al. Hyperspectral image super-resolution via deep spatiospectral attention convolutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 33, 7251-7265(2022).

    [15] Liang G J, Kintak U, Yin H C et al. Multi-scale hybrid attention graph convolution neural network for remote sensing images super-resolution[J]. Signal Processing, 207, 108954(2023).

    [16] Razavi A, van den Oord A, Vinyals O et al. Generating diverse high-fidelity images with VQ-VAE-2[C], 14837-14847(2019).

    [17] Shi Z H, Xiao J, Jiang J H et al. Identifying reliability high-correlated gates of logic circuits with Pearson correlation coefficient[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 71, 2319-2323(2024).

    [18] Chen S X, Xu S H. Cauchy nonnegative matrix factorization for hyperspectral unmixing based on graph laplacian regularization[J]. Laser & Optoelectronics Progress, 61, 1428004(2024).

    [19] Jia K, Yang Z, Zheng L M et al. Spearman correlation-based pilot protection for transmission line connected to PMSGs and DFIGs[J]. IEEE Transactions on Industrial Informatics, 17, 4532-4544(2021).

    [20] Hu J F, Huang T Z, Deng L J et al. Fusformer: a transformer-based fusion network for hyperspectral image super-resolution[J]. IEEE Geoscience and Remote Sensing Letters, 19, 6012305(2022).

    [21] Luo Z D, Li H X. Dynamic partial-least-squares-based fault detection for nonlinear distributed parameter systems[J]. IEEE Transactions on Instrumentation and Measurement, 73, 3515509(2024).

    [22] Yasuma F, Mitsunaga T, Iso D et al. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum[J]. IEEE Transactions on Image Processing, 19, 2241-2253(2010).

    [23] Chakrabarti A, Zickler T. Statistics of real-world hyperspectral images[C], 193-200(2011).

    [24] Li S T, Dian R W, Fang L Y et al. Fusing hyperspectral and multispectral images via coupled sparse tensor factorization[J]. IEEE Transactions on Image Processing, 27, 4118-4130(2018).

    [25] Zhang L, Nie J T, Wei W et al. Unsupervised adaptation learning for hyperspectral imagery super-resolution[C], 3070-3079(2020).

    [26] Wang X H, Chen J, Wei Q et al. Hyperspectral image super-resolution via deep prior regularization with parameter estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 32, 1708-1723(2022).

    [27] Zhu Z Y, Hou J H, Chen J et al. Hyperspectral image super-resolution via deep progressive zero-centric residual learning[J]. IEEE Transactions on Image Processing, 30, 1423-1438(2021).

    [28] Wang M H, Zhang B, Li J X et al. A feature fusion-based transformer network for hyperspectral super-resolution[C](2023).

    Jiale Fan, Qiang Li, Ruifeng Zhang, Xin Guan. Spatial Spectral VAFormer Graph Convolution Hyperspectral Image Super-Resolution Network[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0228001
    Download Citation