• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207020 (2018)
Liang Guohai* and Xing Da
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207020 Cite this Article Set citation alerts
    Liang Guohai, Xing Da. Progress in Organic Nanomaterials for Laser-Induced Photothermal Therapy of Tumor[J]. Chinese Journal of Lasers, 2018, 45(2): 207020 Copy Citation Text show less
    References

    [1] Jaque D. Martinez M L, del Rosal B, et al. Nanoparticles for photothermal therapies[J]. Nanoscale, 6, 9494-9530(2014).

    [2] Rahmathulla G, Recinos P F, Kamian K. et al. Mri-guided laser interstitial thermal therapy in neuro-oncology: A review of its current clinical applications[J]. Oncology, 87, 67-82(2014). http://www.karger.com/Article/PDF/362817

    [3] Drake P, Cho H J, Shih P S. et al. Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia[J]. Journal of Materials Chemistry, 17, 4914-4918(2007). http://www.researchgate.net/publication/230667125_Gd-doped_iron-oxide_nanoparticles_for_tumour_therapy_via_magnetic_field_hyperthermia

    [4] Prasad N K, Rathinasamy K, Panda D. et al. Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-MnxFe2-xO3 synthesized by a single step process[J]. Journal of Materials Chemistry, 17, 5042-5051(2007). http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1039/b708156a

    [5] Nikoobakht B. El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method[J]. Chemistry of Materials, 15, 1957-1962(2003). http://pubs.acs.org/doi/abs/10.1021/cm020732l

    [6] Xia Y N, Li W Y, Cobley C M. et al. Gold nanocages: From synthesis to theranostic applications[J]. Accounts of Chemical Research, 44, 914-924(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3168958/

    [7] Yang K, Feng L Z, Shi X Z. et al. Nano-graphene in biomedicine: Theranostic applications[J]. Chemical Society Reviews, 42, 530-547(2013). http://pubs.acs.org/servlet/linkout?suffix=ref103/cit103&dbid=16&doi=10.1021%2Facsnano.5b05040&key=10.1039%2FC2CS35342C

    [8] Huang X Q, Tang S H, Mu X L. et al. Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nature Nanotechnology, 6, 28-32(2011). http://www.nature.com/nnano/journal/v6/n1/abs/nnano.2010.235.html

    [9] Zhou M, Zhang R, Huang M. et al. A chelator-free multifunctional [ 64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy [J]. Journal of the American Chemical Society, 132, 15351-15358(2010). http://europepmc.org/abstract/med/20942456

    [10] Li J, Jiang F, Yang B. et al. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy[J]. Scientific Reports, 3, 1998(2013). http://www.ncbi.nlm.nih.gov/pubmed?term=Wen-Rong%20Shi

    [11] Chou S S, Kaehr B, Kim J. et al. Chemically exfoliated MoS2 as near-infrared photothermal agents[J]. Angewandte Chemie International Edition, 52, 4160-4164(2013). http://199.171.202.195/doi/10.1002/anie.201209229/references

    [12] Liu Z, Fan A C, Rakhra K. et al. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy[J]. Angewandte Chemie International Edition, 48, 7668-7672(2009). http://onlinelibrary.wiley.com/doi/10.1002/anie.200902612/pdf

    [13] Bhirde A A, Patel V, Gavard J. et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery[J]. ACS Nano, 3, 307-316(2009). http://europepmc.org/abstract/MED/19236065

    [14] Poland C A, Duffin R, Kinloch I. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study[J]. Nature Nanotechnology, 3, 423-428(2008). http://europepmc.org/abstract/MED/18654567

    [15] Takagi A, Hirose A, Nishimura T. et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery[J]. The Journal of Toxicological Sciences, 33, 105-116(2008). http://europepmc.org/abstract/MED/19236065

    [16] Yuan A, Wu J H, Tang X L. et al. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies[J]. Journal of Pharmaceutical Sciences, 102, 6-28(2013). http://onlinelibrary.wiley.com/doi/10.1002/jps.23356/full

    [17] Muhanna N, Jin C S, Huynh E. et al. Phototheranostic porphyrin nanoparticles enable visualization and targeted treatment of head and neck cancer in clinically relevant models[J]. Theranostics, 5, 1428-1443(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4672023/

    [18] Zheng X H, Xing D, Zhou F F. et al. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy[J]. Molecular Pharmaceutics, 8, 447-456(2011). http://pubs.acs.org/doi/abs/10.1021/mp100301t

    [19] Yue C X, Liu P, Zheng M B. et al. IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy[J]. Biomaterials, 34, 6853-6861(2013). http://www.sciencedirect.com/science/article/pii/S0142961213006637

    [20] Cheng L, He W W, Gong H. et al. Pegylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy[J]. Advanced Functional Materials, 23, 5893-5902(2013). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201301045/full

    [21] Zheng M B, Yue C X, Ma Y F. et al. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy[J]. ACS Nano, 7, 2056-2067(2013). http://pubs.acs.org/doi/abs/10.1021/nn400334y

    [22] Gong H, Dong Z L, Liu Y M. et al. Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging[J]. Advanced Functional Materials, 24, 6492-6502(2014). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201401451/pdf

    [23] Gao F P, Lin Y X, Li L L. et al. Supramolecular adducts of squaraine and protein for noninvasive tumor imaging and photothermal therapy in vivo[J]. Biomaterials, 35, 1004-1014(2014). http://www.ncbi.nlm.nih.gov/pubmed/24169004

    [24] Chen Q, Wang C, Zhan Z X. et al. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy[J]. Biomaterials, 35, 8206-8214(2014). http://www.sciencedirect.com/science/article/pii/S0142961214006899

    [25] Huang P, Rong P F, Jin A. et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy[J]. Advanced Materials, 26, 6401-6408(2014). http://www.ncbi.nlm.nih.gov/pubmed/25123089

    [26] Lovell J F, Jin C S, Huynh E. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nature Materials, 10, 324-332(2011). http://europepmc.org/abstract/MED/21423187

    [27] Yang J, Choi J, Bang D. et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Angewandte Chemie International Edition, 50, 441-444(2011). http://onlinelibrary.wiley.com/doi/10.1002/anie.201005075/pdf

    [28] Zha Z B, Yue X L, Ren Q S. et al. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells[J]. Advanced Materials, 25, 777-782(2013). http://onlinelibrary.wiley.com/doi/10.1002/adma.201202211/full

    [29] Liu Y L, Ai K L, Liu J H. et al. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Advanced Materials, 25, 1353-1359(2013). http://www.ncbi.nlm.nih.gov/pubmed/23280690

    [30] Lyu Y, Fang Y, Miao Q Q. et al. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy[J]. ACS Nano, 10, 4472-4481(2016). http://pubs.acs.org/doi/abs/10.1021/acsnano.6b00168

    [31] Cheng L, Yang K, Chen Q. et al. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer[J]. ACS Nano, 6, 5605-5613(2012). http://pubs.acs.org/doi/abs/10.1021/nn301539m

    [32] Dzurinko V L, Gurwood A S, Price J R. Intravenous and indocyanine green angiography[J]. Optometry, 75, 743-755(2004). http://europepmc.org/abstract/MED/15624671

    [33] Yoneya S, Saito T, Komatsu Y. et al. Binding properties of indocyanine green in human blood[J]. Investigative Ophthalmology & Visual Science, 39, 1286-1290(1998). http://europepmc.org/abstract/med/9620093

    [34] Saxena V, Sadoqi M, Shao J. Degradation kinetics of indocyanine green in aqueous solution[J]. Journal of Pharmaceutical Sciences, 92, 2090-2097(2003). http://www.sciencedirect.com/science/article/pii/S0022354916313351

    [35] Mordon S, Devoisselle J M, Soulie-Begu S. et al. Indocyanine green: Physicochemical factors affecting its fluorescence in vivo[J]. Microvascular Research, 55, 146-152(1998). http://www.ncbi.nlm.nih.gov/pubmed/9521889

    [36] Quan B, Choi K, Kim Y H. et al. Near infrared dye indocyanine green doped silica nanoparticles for biological imaging[J]. Talanta, 99, 387-393(2012). http://europepmc.org/abstract/MED/22967569

    [37] Altinoglu E I, Russin T J, Kaiser J M. et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer[J]. ACS Nano, 2, 2075-2084(2008). http://pubs.acs.org/doi/abs/10.1021/nn800448r

    [38] Zheng M B, Zhao P F, Luo Z Y. et al. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy[J]. ACS Applied Materials & Interfaces, 6, 6709-6716(2014). http://europepmc.org/abstract/med/24697646

    [39] Liu P, Yue C X, Shi B H. et al. Dextran based sensitive theranostic nanoparticles for near-infrared imaging and photothermal therapy in vitro[J]. Chemical Communications, 49, 6143-6145(2013). http://www.ncbi.nlm.nih.gov/pubmed/23727789/

    [40] Song X J, Chen Q, Liu Z. Recent advances in the development of organic photothermal nano-agents[J]. Nano Research, 8, 340-354(2015). http://www.cqvip.com/QK/71233X/201502/665085694.html

    [41] Luo S L, Tan X, Qi Q R. et al. A multifunctional heptamethine near-infrared dye for cancer theranosis[J]. Biomaterials, 34, 2244-2251(2013). http://europepmc.org/abstract/MED/23261220

    [42] Yu J, Javier D, Yaseen M A. et al. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules[J]. Journal of the American Chemical Society, 132, 1929-1938(2010). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=20092330

    [43] Chen Q, Wang C, Cheng L. et al. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy[J]. Biomaterials, 35, 2915-2923(2014). http://www.ncbi.nlm.nih.gov/pubmed/24412081

    [44] Wu L, Fang S T, Shi S. et al. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study[J]. Biomacromolecules, 14, 3027-3033(2013). http://pubs.acs.org/doi/abs/10.1021/bm400839b

    [45] Sheng Z H, Song L, Zheng J X. et al. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy[J]. Biomaterials, 34, 5236-5243(2013). http://www.sciencedirect.com/science/article/pii/S0142961213004249

    [46] Chen Q, Liu X D, Chen J W. et al. A self-assembled albumin-based nanoprobe for in vivo ratiometric photoacoustic pH imaging[J]. Advanced Materials, 27, 6820-6827(2015). http://europepmc.org/abstract/MED/26418312

    [47] Rong P F, Huang P, Liu Z G. et al. Protein-based photothermal theranostics for imaging-guided cancer therapy[J]. Nanoscale, 7, 16330-16336(2015). http://www.ncbi.nlm.nih.gov/pubmed/26382146

    [48] Lovell J F, Jin C S, Huynh E. et al. Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles[J]. Angewandte Chemie International Edition, 51, 2429-2433(2012). http://europepmc.org/abstract/MED/22267090

    [49] Jin C S, Lovell J F, Chen J. et al. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly[J]. ACS Nano, 7, 2541-2550(2013). http://www.ncbi.nlm.nih.gov/pubmed/23394589

    [50] Ng K K, Lovell J F, Vedadi A. et al. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications[J]. ACS Nano, 7, 3484-3490(2013). http://www.ncbi.nlm.nih.gov/pubmed/23464857

    [51] Huynh E, Jin C S, Wilson B C. et al. Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging[J]. Bioconjugate Chemistry, 25, 796-801(2014). http://proceedings.spiedigitallibrary.org/data/conferences/spiep/78067/89435o.pdf

    [52] Liu T W. MacDonald T D, Shi J Y, et al. Intrinsically copper-64-labeled organic nanoparticles as radiotracers[J]. Angewandte Chemie International Edition, 51, 13128-13131(2012).

    [53] MacDonald T D, Liu T W, Zheng G. An mri-sensitive, non-photobleachable porphysome photothermal agent[J]. Angewandte Chemie International Edition, 53, 6956-6959(2014). http://europepmc.org/abstract/med/24840234

    [54] Yang K, Xu H, Cheng L. et al. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles[J]. Advanced Materials, 24, 5586-5592(2012). http://onlinelibrary.wiley.com/doi/10.1002/adma.201202625/pdf

    [55] Wang Q, Wang J D, Lv G. et al. Facile synthesis of hydrophilic polypyrrole nanoparticles for photothermal cancer therapy[J]. Journal of Materials Science, 49, 3484-3490(2014). http://link.springer.com/article/10.1007/s10853-014-8061-2

    [56] Wang C, Xu H, Liang C. et al. Iron oxide @polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect[J]. ACS Nano, 7, 6782-6795(2013). http://europepmc.org/abstract/MED/23822176

    [57] Ku S H, Ryu J, Hong S K. et al. General functionalization route for cell adhesion on non-wetting surfaces[J]. Biomaterials, 31, 2535-2541(2010). http://www.ncbi.nlm.nih.gov/pubmed/20061015

    [58] Bettinger C J, Bruggeman J P, Misra A. et al. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering[J]. Biomaterials, 30, 3050-3057(2009). http://europepmc.org/articles/PMC4059055/table/T1/

    [59] Cho S, Kim S H. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres[J]. Journal of Colloid and Interface Science, 458, 87-93(2015). http://www.ncbi.nlm.nih.gov/pubmed/26210098

    [60] Hu D H, Liu C B, Song L. et al. Indocyanine green-loaded polydopamine-iron ions coordination nanoparticles for photoacoustic/magnetic resonance dual-modal imaging-guided cancer photothermal therapy[J]. Nanoscale, 8, 17150-17158(2016). http://www.ncbi.nlm.nih.gov/pubmed/27539790

    [61] Park J, Brust T F, Lee H J. et al. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers[J]. ACS Nano, 8, 3347-3356(2014). http://europepmc.org/abstract/med/24628245

    [62] Liu Y L, Ai K L, Lu L H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical Reviews, 114, 5057-5115(2014). http://www.ncbi.nlm.nih.gov/pubmed/24517847

    [63] Miao Q Q, Lyu Y, Ding D. et al. Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of pH[J]. Advanced Materials, 28, 3662-3668(2016). http://europepmc.org/abstract/MED/27000431

    [64] Pu K Y, Shuhendler A J, Rao J H. Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species[J]. Angewandte Chemie International Edition, 52, 10325-10329(2013). http://pubmedcentralcanada.ca/pmcc/articles/PMC4079533/

    [65] Shuhendler A J, Pu K Y, Cui L N. et al. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing[J]. Nature Biotechnology, 32, 373-380(2014). http://europepmc.org/articles/PMC4070437

    [66] Pu K Y, Mei J G, Jokerst J V. et al. Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging[J]. Advanced Materials, 27, 5184-5190(2015). http://onlinelibrary.wiley.com/doi/10.1002/adma.201502285/pdf

    [67] Zhang J F, Yang C X, Zhang R. et al. Biocompatible D-A semiconducting polymer nanoparticle with light-harvesting unit for highly effective photoacoustic imaging guided photothermal therapy[J]. Advanced Functional Materials, 27, 1605094(2017). http://www.ncbi.nlm.nih.gov/pubmed/29046623

    [68] Geng J L, Sun C Y, Liu J. et al. Biocompatible conjugated polymer nanoparticles for efficient photothermal tumor therapy[J]. Small, 11, 1603-1610(2015). http://europepmc.org/abstract/med/25367500

    Liang Guohai, Xing Da. Progress in Organic Nanomaterials for Laser-Induced Photothermal Therapy of Tumor[J]. Chinese Journal of Lasers, 2018, 45(2): 207020
    Download Citation