• Acta Optica Sinica
  • Vol. 40, Issue 16, 1611003 (2020)
Chao Zhang1、2, Tao Xing1、2, Zizhen Liu1、2, Haokun He1、2, Hua Shen1、2、*, Yinxu Bian1、2, and Rihong Zhu1、2
Author Affiliations
  • 1School of Electronic and Optical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China;
  • 2Key Laboratory of Advanced Solid Laser, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
  • show less
    DOI: 10.3788/AOS202040.1611003 Cite this Article Set citation alerts
    Chao Zhang, Tao Xing, Zizhen Liu, Haokun He, Hua Shen, Yinxu Bian, Rihong Zhu. Lens-Free Imaging Method Based on Generative Adversarial Networks[J]. Acta Optica Sinica, 2020, 40(16): 1611003 Copy Citation Text show less
    References

    [1] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).

    [2] Dierolf M, Menzel A, Thibault P et al. Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 467, 436-439(2010).

    [3] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [4] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2, 104-111(2015).

    [5] Misell D L. An examination of an iterative method for the solution of the phase problem in optics and electron optics: I. test calculations[J]. Journal of Physics D: Applied Physics, 6, 2200-2216(1973).

    [6] Teague M R. Deterministic phase retrieval: a Green's function solution[J]. Journal of the Optical Society of America, 73, 1434-1441(1983).

    [7] Paganin D, Barty A. McMahon P J, et al. Quantitative phase-amplitude microscopy. III. the effects of noise[J]. Journal of Microscopy, 214, 51-61(2004).

    [8] Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy[J]. Optics Express, 20, 3129(2012).

    [9] Rivenson Y, Wu Y C, Wang H D et al. Sparsity-based multi-height phase recovery in holographic microscopy[J]. Scientific Reports, 6, 37862(2016).

    [10] Wang H D, Göröcs Z, Luo W et al. Computational out-of-focus imaging increases the space-bandwidth product in lens-based coherent microscopy[J]. Optica, 3, 1422-1429(2016).

    [11] Ferraro P, Miccio L, Grilli S et al. Quantitative phase microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography[J]. Optics Express, 15, 14591-14600(2007).

    [12] Luo W, Zhang Y B, Feizi A et al. Pixel super-resolution using wavelength scanning[J]. Light: Science & Applications, 5, e16060(2016).

    [13] Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 21, 829-832(1982).

    [14] Eisebitt S, Lüning J, Schlotter W F et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography[J]. Nature, 432, 885-888(2004).

    [15] Rosen J, Brooker G. Non-scanning motionless fluorescence three-dimensional holographic microscopy[J]. Nature Photonics, 2, 190-195(2008).

    [16] Marchesini S, Boutet S, Sakdinawat A E et al. Massively parallel X-ray holography[J]. Nature Photonics, 2, 560-563(2008).

    [17] Popescu G, Ikeda T, Dasari R R et al. Diffraction phase microscopy for quantifying cell structure and dynamics[J]. Optics Letters, 31, 775-777(2006).

    [18] Coppola G, di Caprio G, Gioffré M et al. Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction[J]. Optics Letters, 35, 3390-3392(2010).

    [19] Wang Z, Millet L, Mir M et al. Spatial light interference microscopy (SLIM)[J]. Optics Express, 19, 1016-1026(2011).

    [20] Rivenson Y, Katz B, Kelner R et al. Single channel in-line multimodal digital holography[J]. Optics Letters, 38, 4719-4722(2013).

    [21] Shechtman Y, Eldar Y C, Cohen O et al. Phase retrieval with application to optical imaging: a contemporary overview[J]. IEEE Signal Processing Magazine, 32, 87-109(2015).

    [22] Kelner R, Rosen J. Methods of single-channel digital holography for three-dimensional imaging[J]. IEEE Transactions on Industrial Informatics, 220-230(2015).

    [23] Rivenson Y, Zhang Y B, Günaydın H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141(2018).

    [24] Ren Z B, Xu Z M, Lam E Y. Learning-based nonparametric autofocusing for digital holography[J]. Optica, 5, 337-344(2018).

    [25] Wu Y C, Rivenson Y, Zhang Y B et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery[J]. Optica, 5, 704-710(2018).

    [26] Wang K Q, Dou J Z, Qian K M et al. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction[J]. Optics Letters, 44, 4765(2019).

    [27] Nguyen T, Bui V, Lam V et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 25, 15043-15057(2017).

    [28] Zhang G, Guan T, Shen Z Y et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express, 26, 19388-19405(2018).

    Chao Zhang, Tao Xing, Zizhen Liu, Haokun He, Hua Shen, Yinxu Bian, Rihong Zhu. Lens-Free Imaging Method Based on Generative Adversarial Networks[J]. Acta Optica Sinica, 2020, 40(16): 1611003
    Download Citation