• Acta Optica Sinica
  • Vol. 36, Issue 7, 712004 (2016)
Feng Xiujuan*, He Longbiao, Niu Feng, Yang Ping, Zhong Bo, and Xu Huan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.0712004 Cite this Article Set citation alerts
    Feng Xiujuan, He Longbiao, Niu Feng, Yang Ping, Zhong Bo, Xu Huan. Realization of Airborne Sound Pressure Based on Photon Correlation Spectroscopy[J]. Acta Optica Sinica, 2016, 36(7): 712004 Copy Citation Text show less
    References

    [1] Electroacoustics - measurement microphones - part 2: Primary method for pressure calibration of laboratory standard microphones by the reciprocity technique: IEC 61094-2-2009[S]. Geneva: International Electrotechnical Commission, 2009.

    [2] Measurement microphones - part 3: Primary method for free-field calibration of laboratory standard microphones by the reciprocity technique: IEC 61094-3-1995[S]. Geneva: International Electrotechnical Commission, 1995.

    [3] MacGillivray T, Campbell D, Greated C, et al. The development of a microphone calibration technique using photon correlation spectroscopy[J]. Acta Acustica united with Acoustica, 2003, 89(2): 369-376.

    [4] Raangs R, Schlicke T, Barham R. Calibration of a micromachined particle velocity microphone in a standing wave tube using a LDA photon-correlation technique[J]. Measurement Science and Technology, 2005, 16(5): 1099-1108.

    [5] Koukoulas T, Theobald P, Schlicke T, et al. Towards a future primary method for microphone calibration: Optical measurement of acoustic velocity in low seeding conditions[J]. Optics and Lasers in Engineering, 2008, 46(11): 791-796.

    [6] Koukoulas T, Piper B, Theobald P. Gated photon correlation spectroscopy for acoustical particle velocity measurements in free-field conditions[J]. Journal of the Acoustical Society of America, 2013, 133(3): EL156-EL161.

    [7] Koukoulas T, Piper B. Towards direct realization of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements[J]. Applied Physics Letters, 2015, 106(16): 164101.

    [8] He Longbiao, Li Liangjie, Wang Xuejing. Realization of air borne sound pressure using laser Doppler spectral analyzing technique[J]. Laser & Infrared, 2013, 43(10): 1104-1107.

    [9] He Longbiao, Niu Feng, Xu Huan, et al. Realization of air borne sound pressure unit using LDV spectral analyzing and autocorrelation technique[J]. Noise and Vibration Control, 2013, 33(S1): 225-228.

    [10] Li Enbang. Three-dimensional laser Doppler velocimetry using frequency shift separation[J]. Acta Optica Sinica, 1994, 14(7): 768-772.

    [11] Huang Zhen, Liu Bin, Dong Quanlin. Research on the torsional vibration measurement based on laser Doppler technique[J]. Acta Optica Sinica, 2006, 26(3): 389-392.

    [12] Guo Jihua, Xu Zhengqi, Yin Chunyong. Ultralow speed measurement by laser Doppler velocimetry[J]. Acta Optica Sinica, 1996, 16(2): 252-256.

    [13] Zhou Jian, Long Xingwu. Research on multipoint layer-type laser Doppler self-velocimetry[J]. Chinese J Lasers, 2010, 37(7): 1837-1844.

    [14] He Yan, Wang Wenkui, Xia Wenbing, et al. Laser Doppler vibrometer for acousto-optic communication[J]. Chinese J Lasers, 2007, 34(5): 703-706.

    [15] Taylor K J. Absolute measurement of acoustic particle velocity[J]. Journal of the Acoustical Society of America, 1976, 59(3): 691-694.

    [16] Taylor K J. Absolute calibration of microphones by a laser-Doppler technique[J]. Journal of the Acoustical Society of America, 1981, 70(4): 939-945.

    [17] Hann D, Greated C A. Acoustic measurements in flows using photon correlation spectroscopy[J]. Measurement Science and Technology, 1994, 5(2): 157-164.

    [18] Hann D, Greated C A. The measurement of sound fields using laser Doppler anemometry[J]. Acta Acustica united with Acoustica, 1999, 85(3): 401-411.

    [19] Sharpe J P, Greated C A. The measurement of periodic acoustic fields using photon correlation spectroscopy[J]. Journal of Physics D, 1987, 20(4): 418-423.

    [20] Li Liangjie. Research on realization of airborne sound pressure unit on by LDV technology[D]. Beijing: Beijing University of Chemical Technology, 2013: 18-19.

    [21] Melling A. Tracer particles and seeding for particle image velocimetry[J]. Measurement Science and Technology, 1997, 8(12): 1406-1416.

         Huang Dekang, Li Cairong, Zhu Maohua, et al. Effect of scattering particle size on signal to noise ratio in Doppler speed measuring with laser device[J]. Optical Technology, 2003, 29(2): 164-165.

    Feng Xiujuan, He Longbiao, Niu Feng, Yang Ping, Zhong Bo, Xu Huan. Realization of Airborne Sound Pressure Based on Photon Correlation Spectroscopy[J]. Acta Optica Sinica, 2016, 36(7): 712004
    Download Citation