• Chinese Journal of Lasers
  • Vol. 46, Issue 5, 0508024 (2019)
Mengyao Hou1, Siqi Wang1, Danwen Yao1, Yao Fu1, Hongwei Zang1, Helong Li1、2, and Huailiang Xu1、*
Author Affiliations
  • 1College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
  • 2Atomic and Molecular Institute, Jilin University, Changchun, Jilin 130012, China
  • show less
    DOI: 10.3788/CJL201946.0508024 Cite this Article Set citation alerts
    Mengyao Hou, Siqi Wang, Danwen Yao, Yao Fu, Hongwei Zang, Helong Li, Huailiang Xu. Effects of Pulse Duration and Polarization on Femtosecond Filament-Induced Fluorescence of Combustion Intermediates[J]. Chinese Journal of Lasers, 2019, 46(5): 0508024 Copy Citation Text show less
    References

    [1] Nie L. Energy efficiency, environment pollution and the transformation of China's economic development mode[D]. Nanjing: Nanjing Normal University, 10(2018).

    [2] Kohse-Höinghaus K. Laser techniques for the quantitative detection of reactive intermediates in combustion systems[J]. Progress in Energy and Combustion Science, 20, 203-279(1994). http://www.sciencedirect.com/science/article/pii/0360128594900159

    [3] Thariyan M P, Bhuiyan A H, Meyer S E. et al. Dual-pump coherent anti-Stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility[J]. Measurement Science and Technology, 22, 015301(2011). http://adsabs.harvard.edu/abs/2011MeScT..22a5301T

    [4] Mokhov A V. Levinsky H B, van der Meij C E, et al. Analysis of laser-induced-fluorescence carbon monoxide measurements in turbulent nonpremixed flames[J]. Applied Optics, 34, 7074(1995).

    [5] Stavropoulos P, Palagas C, Angelopoulos G N et al. Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 1885-1892(2004). http://www.sciencedirect.com/science/article/pii/S0584854704002538

    [6] Yang W B, Li B C, Han Y L et al. Quantitative analysis of trace oxygen concentration in argon and nitrogen based on laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 44, 1011001(2017).

    [7] Zhang Q H, Liu Y Z, Zhu R S et al. Detection of Pb in atmospheric particulates with laser-induced breakdown spectroscopy technique[J]. Laser & Optoelectronics Progress, 55, 123002(2018).

    [8] Liu J R. Hu Z Y Applications of measurement techniques based on lasers in combustion flow field diagnostics[J]. Chinese Journal of Optics, 11, 531-549(2018).

    [9] Zhang S H, Yu X L, Li F et al. Laser induced breakdown spectroscopy for local equivalence ratio measurement of kerosene/air mixture at elevated pressure[J]. Optics and Lasers in Engineering, 50, 877-882(2012). http://www.sciencedirect.com/science/article/pii/S014381661200005X

    [10] Michalakou A, Stavropoulos P, Couris S. Laser-induced breakdown spectroscopy in reactive flows of hydrocarbon-air mixtures[J]. Applied Physics Letters, 92, 081501(2008). http://scitation.aip.org/content/aip/journal/apl/92/8/10.1063/1.2839378

    [11] Chin S L. Femtosecond laser filamentation[M]. New York, NY: Springer New York(2010).

    [12] Tu Z W, Wei X Y, Liu C et al. Detection of iodine sublimation by filament-induced fluorescence spectroscopy[J]. Chinese Journal of Lasers, 44, 0411001(2017).

    [13] Chin S L, Talebpour A, Yang J et al. Filamentation of femtosecond laser pulses in turbulent air[J]. Applied Physics B: Lasers and Optics, 74, 67-76(2002). http://link.springer.com/article/10.1007/s003400100738

    [14] Xu H L, Simard P T, Kamali Y. et al. Filament-induced breakdown remote spectroscopy in a polar environment[J]. Laser Physics, 22, 1767-1770(2012). http://link.springer.com/article/10.1134/S1054660X12120298

    [15] Kasparian J. White-light filaments for atmospheric analysis[J]. Science, 301, 61-64(2003). http://europepmc.org/abstract/MED/12843384

    [16] Ju J J, Liu J S, Wang C et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber[J]. Optics Letters, 37, 1214(2012). http://www.ncbi.nlm.nih.gov/pubmed/22466199

    [17] Kasparian J, Ackermann R, Andre Y B et al. Progress towards lightning control using lasers[J]. Journal of the European Optical Society: Rapid Publications, 3, 08035(2008). http://adsabs.harvard.edu/abs/2008JEOS....3E8035K

    [18] Li H L, Xu H L, Yang B S. et al. Sensing combustion intermediates by femtosecond filament excitation[J]. Optics Letters, 38, 1250-1252(2013). http://europepmc.org/abstract/med/23595448

    [19] Chu W, Li H L, Ni J L. et al. Lasing action induced by femtosecond laser filamentation in ethanol flame for combustion diagnosis[J]. Applied Physics Letters, 104, 091106(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6756816

    [20] Zang H W, Li H L, Su Y. et al. Third-harmonic generation and scattering in combustion flames using a femtosecond laser filament[J]. Optics Letters, 43, 615-618(2018). http://www.ncbi.nlm.nih.gov/pubmed/29400854

    [21] Liu C, Zang H W, Li H L. et al. Polarization effect on critical power and luminescence in an air filament[J]. Chinese Optics Letters, 15, 120201(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1711050000040GcIfL

    [22] Xu H L, Bernhardt J, Mathieu P. et al. Understanding the advantage of remote femtosecond laser-induced breakdown spectroscopy of metallic targets[J]. Journal of Applied Physics, 101, 033124(2007). http://scitation.aip.org/content/aip/journal/jap/101/3/10.1063/1.2437580

    [23] Yao J P, Zeng B, Xu H L. et al. High-brightness switchable multiwavelength remote laser in air[J]. Physical Review A, 84, 051802(2011).

    [24] Panov N A, Kosyreva O G. Savel'ev-Trofimov A B, et al. Filamentation of femtosecond Gaussian pulses with close-to-linear or -circular elliptical polarization[J]. Quantum Electronics, 41, 160-162(2011).

    [25] Petit S, Talebpour A, Proulx A. et al. Polarization dependence of the propagation of intense laser pulses in air[J]. Optics Communications, 175, 323-327(2000). http://www.sciencedirect.com/science/article/pii/S0030401800004946

    [26] Zhang X, Wang T J, Guo H[2019-03-11]. et al. Polarization sensitive laser intensity inside femtosecond filament in air[2019-03-11]. https:∥arxiv., org/abs/1902, 03432.

    [27] Théberge F, Liu W W, Simard P T. et al. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing[J]. Physical Review E, 74, 036406(2006). http://europepmc.org/abstract/MED/17025753

    [28] Nibbering E T J, Grillon G, Franco M A et al. Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses[J]. Journal of the Optical Society of America B, 14, 650-660(1997). http://www.opticsinfobase.org/josab/abstract.cfm?id=34926

    [29] Ripoche J F, Grillon G, Prade B et al. Determination of the time dependence of n2 in air[J]. Optics Communications, 135, 310-314(1997). http://www.sciencedirect.com/science/article/pii/S003040189600675X

    [30] Liu W, Chin S L. Direct measurement of the critical power of femtosecond Ti∶sapphire laser pulse in air[J]. Optics Express, 13, 5750-5755(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000004000011000172000001&idtype=cvips&gifs=Yes

    Mengyao Hou, Siqi Wang, Danwen Yao, Yao Fu, Hongwei Zang, Helong Li, Huailiang Xu. Effects of Pulse Duration and Polarization on Femtosecond Filament-Induced Fluorescence of Combustion Intermediates[J]. Chinese Journal of Lasers, 2019, 46(5): 0508024
    Download Citation