• Laser & Optoelectronics Progress
  • Vol. 53, Issue 10, 101408 (2016)
Liu Dun*, Wu Yigang, Hu Yongtao, Wu Ying, Yang Qibiao, Lou Deyuan, Zhai Zhongsheng, Chen Lie, and Bennett Peter
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.101408 Cite this Article Set citation alerts
    Liu Dun, Wu Yigang, Hu Yongtao, Wu Ying, Yang Qibiao, Lou Deyuan, Zhai Zhongsheng, Chen Lie, Bennett Peter. Fabrication of Super-Hydrophobic Aluminum Surface by Picosecond Laser[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101408 Copy Citation Text show less
    References

    [1] Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677.

    [2] Wang Y X, Orol D, Owens J, et al. Design and development of anti-icing aluminum surface[J]. Materials Sciences and Applications, 2013, 4(6): 347-356.

    [3] Valette S, Steyer P, Richard L, et al. Influence of femtosecond laser marking on the corrosion resistance of stainless steels[J]. Applied Surface Science, 2006, 252(13): 4696-4701.

    [4] Kietzig A M, Mirvakili M N, Kamal S, et al. Nanopatterned metallic surfaces: Their wettability and impact on ice friction[J]. Journal of Adhesion Science and Technology, 2011, 25(12): 1293-1303 .

    [5] Xie D, Li W. A novel simple approach to preparation of superhydrophobic surfaces of aluminum alloys[J]. Applied Surface Science, 2011, 258(3): 1004-1007.

    [6] Guo C, Wang X W, Yuan Z H. Pore diameter-dependence wettability of porous anodized aluminum oxide membranes[J]. Journal of Porous Materials, 2013, 20(4): 673-677.

    [7] Rao A V, Kulkarni M M, Amalnerkar D P, et al. Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor[J]. Journal of Non-Crystalline Solids, 2003, 330(1-3): 187-195.

    [8] Lian Feng, Zhang Huichen, Pang Lianyun, et al. Effects of surface film on superhydrophobic characteristics of Ti6Al4V with dotted matrix structure[J]. Rare Metal Materials and Engineering, 2012, 4(41): 612-616.

    [9] Long Jiangyou, Wu Yingchao, Gong Dingwei, et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese J Lasers, 2015, 42(7): 0706002.

    [10] Liu Ying, Jiang Yijian. Super-hydrophobic surface of poly (vinylidene fluoride) film fast fabricated by KrF excimer laser irradiation[J]. Chinese J of Lasers, 2011, 38(1): 0106002.

    [11] Lin Cheng, Zhong Minlin, Fan Peixun, et al. Picosecond laser fabrication of large-area surface micro-nano lotus-leaf structures and replication of superhydrophobic silicone rubber surfaces[J]. Chinese J Lasers, 2014, 41(9): 0903007.

    [12] Kietzig A M, Hatzikiriakos S G, Englezos P. Patternedsuperhydrophobic metallic surfaces[J]. Langmuir, 2009, 25(8): 4821-4827.

    [13] Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 2015, 117(3): 033103.

    [14] Jagdheesh R. Fabrication of a superhydrophobic Al2O3 surface using picosecond laser pulses[J]. Langmuir, 2014, 30(40): 12067-12073.

    [15] Bizi-bandoki P, Benayoun S, Valette S, et al. Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment[J]. Applied Surface Science, 2011, 257(12): 5213-5218.

    [16] Mannion P T, Magee J, Coyne E, et al. The effect of damage accumulation behavior on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air[J]. Applied Surface Science, 2004, 233(1-4): 275-287.

    [17] Bizi-bandoki P, Valette S, Audouard E, et al. Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations[J]. Applied Surface Science, 2013, 273(2): 399-407.

    [18] Long J Y, Zhong M L, Zhang H J, et al. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J]. Journal of Colloid and Interface Science, 2015, 441: 1-9.

    [19] Giovambattista N, Debenedetti P G, Rossky P J. Effect of surface polarity on water contact angle and interfacial hydration structure[J]. Journal of Physical Chemistry B, 2007, 111(32): 9581-9587.

    [20] Azimi G, Dhiman R, Kwon H M, et al. Hydrophobicity of rare-earth oxide ceramics[J]. Nature Materials, 2013, 12(4): 315-320.

    [21] Gentleman M M, Ruud J A. Role of hydroxyls in oxide wettability[J]. Langmuir, 2009, 26(3): 1408-1411.

    CLP Journals

    [1] Ji Liping, Song Ziyu, Sun Yaping, Wang Xingsheng, Li Chengyu. Single-Shot Picosecond Laser Ablation of Copper Based on COMSOL[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101402

    [2] [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], Peter Bennett. Super-Hydrophobic Micro-Nano Structures on Aluminum Surface Induced by Nanosecond Laser[J]. Laser & Optoelectronics Progress, 2017, 54(9): 91406

    [3] Yang Qibiao, Xiao Chenguang, Chen Zhongpei, Chen Lie, Lou Deyuan, Tao Qing, Zhen Zhong, Zhai Zhongsheng, Liu Dun, Bennett Peter. Surface Wettability of Laser-Induced Al2O3 Ceramic Tools[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101401

    Liu Dun, Wu Yigang, Hu Yongtao, Wu Ying, Yang Qibiao, Lou Deyuan, Zhai Zhongsheng, Chen Lie, Bennett Peter. Fabrication of Super-Hydrophobic Aluminum Surface by Picosecond Laser[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101408
    Download Citation