• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071606 (2020)
Xiulin Peng1、2, Changsheng Yang2、3、*, Huaqiu Deng1、2, Tianyi Tan2、3, Xianchao Guan1、2, Qilai Zhao2、3, Zhouming Feng2、3、4, and Shanhui Xu1、2、3、4
Author Affiliations
  • 1School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
  • 2State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, China
  • 3Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, Guangdong 510640, China
  • 4Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong 510640, China
  • show less
    DOI: 10.3788/LOP57.071606 Cite this Article Set citation alerts
    Xiulin Peng, Changsheng Yang, Huaqiu Deng, Tianyi Tan, Xianchao Guan, Qilai Zhao, Zhouming Feng, Shanhui Xu. Research Progress of Blue-Green Single-Frequency Laser[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071606 Copy Citation Text show less
    References

    [1] Ruan Y F, Xu Q, Lin L. Progress in the technology and materials of blue-green lasers[J]. Journal of Synthetic Crystals, 31, 266-276(2002).

    [2] Jiang D L, Yang Z, Liu G X et al. A novel 450-nm blue laser system for surgical applications: efficacy of specific laser-tissue interactions in bladder soft tissue[J]. Lasers in Medical Science, 34, 807-813(2019).

    [3] Nakatsu Y, Nagao Y, Kozuru K et al. High-efficiency blue and green laser diodes for laser displays. [C]∥SPIE OPTO. Proc SPIE 10918, Gallium Nitride Materials and Devices XIV, San Francisco, California, USA, 109181D(2019).

    [4] Zong Q S, Bo Y, Guo C et al. High brightness narrow-linewidth microsecond pulse green laser by frequency doubling of a master oscillator power amplifier Nd: YAG laser[J]. Optics & Laser Technology, 106, 294-298(2018).

    [5] He J, Lin D, Xu L et al. High-peak-power tunable source at 550 nm from a frequency-doubled Yb-doped fiber MOPA[J]. IEEE Photonics Technology Letters, 31, 727-730(2019).

    [6] Soh D B S, Codemard C, Wang S et al. A 980-nm Yb-doped fiber MOPA source and its frequency doubling[J]. IEEE Photonics Technology Letters, 16, 1032-1034(2004).

    [7] Kumar S C, Samanta G K, Ebrahim-Zadeh M. High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO: sPPLT[J]. Optics Express, 17, 13711-13726(2009).

    [8] Fu S J, Shi W, Feng Y et al. Review of recent progress on single-frequency fiber lasers[J]. Journal of the Optical Society of America B, 34, A49-A62(2017).

    [9] Xu S H, Yang Z M, Liu T et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 15 μm[J]. Optics Express, 18, 1249-1254(2010).

    [10] Xiao Y. Study on high-stability single-frequency fiber laser[D]. Guangzhou: South China University of Technology, 63-69(2015).

    [11] Yin T C, Song Y F, Jiang X G et al. 400 mW narrow linewidth single-frequency fiber ring cavity laser in 2 μm waveband[J]. Optics Express, 27, 15794-15799(2019).

    [12] Xu S H, Yang Z M, Zhang W N et al. 400 mW ultrashort cavity low-noise single-frequencyYb 3+-doped phosphate fiber laser[J]. Optics Letters, 36, 3708-3710(2011).

    [13] Zhu X S, Shi W, Zong J et al. 976 nm single-frequency distributed Bragg reflector fiber laser[J]. Optics Letters, 37, 4167-4169(2012).

    [14] Zhang Y F, Yang C S, Li C et al. Linearly frequency-modulated pulsed single-frequency fiber laser at 1083 nm[J]. Optics Express, 24, 3162-3167(2016).

    [15] Zhang Y N, Li C, Xu S H et al. A broad continuous temperature tunable DBR single-frequency fiber laser at 1064 nm[J]. IEEE Photonics Journal, 8, 1-7(2016).

    [16] Yang C S, Zhao Q L, Feng Z M et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser[J]. Optics Express, 24, 29794-29799(2016).

    [17] Yang C S, Xu S H, Chen D et al. 52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser[J]. Journal of Optics, 18, 055801(2016).

    [18] Yang C S, Xu S H, Yang Q et al. High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers[J]. Applied Physics Express, 7, 062702(2014).

    [19] Deng H Q, Chen D, Zhao Q L et al. An efficient low-noise single-frequency 1033 nm Yb 3+-doped MOPA phosphate fiber laser system[J]. Journal of Optics, 19, 065502(2017).

    [20] Huang Z P, Deng H Q, Yang C S et al. Self-injection locked and semiconductor amplified ultrashort cavity single-frequency Yb 3+-doped phosphate fiber laser at 978 nm[J]. Optics Express, 25, 1535-1541(2017).

    [21] Yang C S. Study on high-performance high-power kHz linewidth single-frequency fiber laser and its application in frequency doubling[D]. Guangzhou: South China University of Technology, 85-106(2015).

    [22] Yang C S, Huang Z P, Deng H Q et al. Ultra-compact all-fiber narrow-linewidth single-frequency blue laser at 489 nm[J]. Journal of Optics, 20, 025803(2018).

    [23] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118-119(1961).

    [24] Terhune R W, Maker P D, Savage C M. Optical harmonic generation in calcite[J]. Physical Review Letters, 8, 404-406(1962).

    [25] Agrawal G P[M]. Nonlinear fiber optics, 17-22(2005).

    [26] Kang Z H. The investigation on temperature disperse of phase matching for second harmonic generation in IR nonlinear crystals[D]. Changchun: Jilin University, 12-21(2008).

    [27] Rota-Rodrigo S, Gouhier B, Dixneuf C et al. Watt-level green random laser at 532 nm by SHG of a Yb-doped fiber laser[J]. Optics Letters, 43, 4284-4287(2018).

    [28] He C J, Yu H J, Zhang J Y et al. High efficiency single-pass SHG of low power CWML and QML laser in an MgO: PPLN[J]. Optics & Laser Technology, 106, 197-201(2018).

    [29] Wiechmann W, Liu L, Kubota S. Efficient 1 watt single frequency CW green generation from an intracavity-doubled diode-pumped Nd: YVO4 laser[J]. Advanced Solid State Lasers, 24, 96-97(1995).

    [30] Martin K I, Clarkson W A, Hanna D C. 3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd: YAG ring laser[J]. Optics Letters, 21, 875-877(1996).

    [31] Lu T T, Wang J T, Zhu X L et al. Highly efficient single longitudinal mode-pulsed green laser[J]. Chinese Optics Letters, 11, 051402(2013).

    [32] Li F Q, Li H J, Lu H D. Realization of a tunable 455. 5-nm laser with low intensity noise by intracavity frequency-doubled Ti: sapphire laser[J]. IEEE Journal of Quantum Electronics, 52, 1-6(2016).

    [33] Li F Q, Li H J, Lu H D et al. High-power tunable single-frequency 461 nm generation from an intracavity doubled Ti: sapphire laser with PPKTP[J]. Laser Physics, 26, 025802(2016).

    [34] Li F Q, Zhao B, Wei J et al. Continuously tunable single-frequency 455 nm blue laser for high-state excitation transition of cesium[J]. Optics Letters, 44, 3785-3788(2019).

    [35] Wang Y T, Liu J L, Liu Q et al. Stable continuous-wave single-frequency Nd: YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion[J]. Optics Express, 18, 12044-12051(2010).

    [36] Meier T, Willke B, Danzmann K. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode[J]. Optics Letters, 35, 3742-3744(2010).

    [37] Hayasaka K, Zhang Y, Kasai K. Generation of 22.8 mW single-frequency green light by frequency doubling of a 50-mW diode laser[J]. Optics Express, 12, 3567-3572(2004).

    [38] Kozlovsky W J, Risk W P, Lenth W et al. Blue light generation by resonator-enhanced frequency doubling of an extended-cavity diode laser[J]. Applied Physics Letters, 65, 525-527(1994).

    [39] Jensen O B, Andersen P E, Sumpf B et al. 15 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser[J]. Optics Express, 17, 6532-6539(2009).

    [40] Zhang Y, Liu J H, Wu J Z et al. Single-frequency tunable 447. 3 nm laser by frequency doubling of tapered amplified diode laser at cesium D1 line[J]. Optics Express, 24, 19769-19775(2016).

    [41] Samanta G K, Kumar S C, Devi K et al. Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency[J]. Optics Letters, 35, 3513-3515(2010).

    [42] Hansen A K, Tawfieq M, Jensen O B et al. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals[J]. Optics Express, 23, 15921-15934(2015).

    [43] Jensen O B, Hansen A K, Müller A et al. Efficient generation of 3. 5 W laser light at 515 nm by frequency doubling a single-frequency high power DBR tapered diode laser[J]. Optics Communications, 392, 167-170(2017).

    [44] Sinha S, Hum D S, Urbanek K E et al. Room-temperature stable generation of 19Watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal[J]. Journal of Lightwave Technology, 26, 3866-3871(2008).

    [45] Samanta G K, Kumar S C, Ebrahim-Zadeh M. Stable, 96 W, continuous-wave, single-frequency, fiber-based green source at 532 nm[J]. Optics Letters, 34, 1561-1563(2009).

    [46] Kumar S C, Samanta G K, Devi K et al. High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation[J]. Optics Express, 19, 11152-11169(2011).

    [47] Shukla M K, Kumar S, Das R. Single-pass, multi-watt second-harmonic-generation in congruent and stoichiometric LiTaO3. [C]∥2015 IEEE Photonics Conference (IPC), October 4-8, 2015. Reston, VA. IEEE, 27, 1379-1382(2015).

    [48] Qian J P, Zhang L, Jiang H W et al. 2 W single-frequency, low-noise 509 nm laser via single-pass frequency doubling of an ECDL-seeded Yb fiber amplifier[J]. Applied Optics, 57, 8733-8737(2018).

    [49] Fang Q, Xu Y, Fu S J et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm[J]. Optics Letters, 41, 1829-1832(2016).

    [50] Rota-Rodrigo S, Gouhier B, Laroche M et al. Watt-level single-frequency tunable neodymium MOPA fiber laser operating at 915-937 nm[J]. Optics Letters, 42, 4557-4560(2017).

    [51] Leconte B, Gilles H, Robin T et al. 7. 5 W blue light generation at 452 nm by internal frequency doubling of a continuous-wave Nd-doped fiber laser[J]. Optics Express, 26, 10000-10006(2018).

    [52] Erbert G, Crump P, Decker J et al. Coherent combining of high brightness tapered lasers in master oscillator power amplifier configuration. [C]∥SPIE LASE. Proc SPIE 10514, High-Power Diode Laser Technology XVI, San Francisco, California, USA, 10514, 105140T(2018).

    [53] Wang H L, Cui J, Shen A D et al. Blue/green diode laser[J]. Laser & Optoelectronics Progress, 29, 7-12(1992).

    [54] Nakamura S. GaN-based blue/green semiconductor laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 3, 435-442(1997).

    [55] Haase M A, Qiu J. DePuydt J M, et al. Blue-green laser diodes[J]. Applied Physics Letters, 59, 1272-1274(1991).

    [56] Fang Z J, Cai H W, Chen G T et al[M]. Single-frequency diode lasers: principle, technology, and applications, 95-127(2015).

    [57] Chen Y H, Lin W C, Chen H Z et al. Single-frequency external cavity green diode laser[J]. IEEE Photonics Journal, 9, 1-7(2017).

    [58] Chen Y H, Lin W C, Shy J T et al. Iodine-stabilized single-frequency green InGaN diode laser[J]. Optics Letters, 43, 126-129(2018).

    [59] Kang J H. WenzelH, Hoffmann V, et al. DFB laser diodes based on GaN using 10th order laterally coupled surface gratings[J]. IEEE Photonics Technology Letters, 30, 231-234(2018).

    [60] Chen M H, Hsiao S C, Shen K T et al. Single longitudinal mode external cavity blue InGaN diode laser[J]. Optics & Laser Technology, 116, 68-71(2019).

    [61] Liang F, Zhao D G, Jiang D S et al. Suppression of optical field leakage in GaN-based green laser diode using graded-indium n-InxGa1-xN lower waveguide[J]. Superlattices and Microstructures, 132, 106153(2019).

    [62] Zhu X S, Peyghambarian N. High-power ZBLAN glass fiber lasers: review and prospect[J]. Advances in OptoElectronics, 2010, 1-23(2010).

    [63] Luo Z Q, Ruan Q J, Zhong M et al. Compact self-Q-switched green upconversion Er: ZBLAN all-fiber laser operating at 5434 nm[J]. Optics Letters, 41, 2258-2261(2016).

    [64] Grubb S G, Bennett K W, Cannon R S et al. CW room-temperature blue upconversion fibre laser[J]. Electronics Letters, 28, 1243-1244(1992).

    [65] Xie P, Gosnell T R. Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions[J]. Optics Letters, 20, 1014-1016(1995).

    [66] Mollaee M, Zhu X S, Zong J et al. Single-frequency blue laser fiber amplifier[J]. Optics Letters, 43, 423-426(2018).

    [67] Li W S, Wu J J, Cai Z P et al. Directly blue diode-pumped green self-Q-switched Ho 3+-doped fluoride all-fiber laser at 550 nm[J]. Journal of Lightwave Technology, 37, 5727-5732(2019).

    Xiulin Peng, Changsheng Yang, Huaqiu Deng, Tianyi Tan, Xianchao Guan, Qilai Zhao, Zhouming Feng, Shanhui Xu. Research Progress of Blue-Green Single-Frequency Laser[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071606
    Download Citation