• Laser & Optoelectronics Progress
  • Vol. 58, Issue 9, 0916001 (2021)
Tianyu Xiang1、2, Tao Lei1, Zhaoyang Shen2, Xiaojun Huang3, and Helin Yang2、*
Author Affiliations
  • 1School of Big Data and Computer Science, Guizhou Normal University, Guiyang , Guizhou 550000, China
  • 2College of Physical Science and Technology, Central China Normal University, Wuhan , Hubei 430079, China
  • 3College of Physics and Electrical Engineering, Kashgar University, Kashgar, Xinjiang 844007, China
  • show less
    DOI: 10.3788/LOP202158.0916001 Cite this Article Set citation alerts
    Tianyu Xiang, Tao Lei, Zhaoyang Shen, Xiaojun Huang, Helin Yang. Fano Resonances in Planar Toroidal Metamaterials[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0916001 Copy Citation Text show less
    References

    [1] Dubovik V M, Cheshkov A A. Multipole expansion in classical and quantum field theory and radiation[J]. Soviet Journal of Particles and Nuclei, 5, 318-364(1974).

    [2] Zel'Dovich I B. Electromagnetic interaction with parity violation[J]. Journal of Experimental and Theoretical Physics, 6, 1184-1186(1958).

    [3] Haxton W C. Atomic parity violation and the nuclear anapole moment[J]. Science, 275, 1750-1753(1997).

    [4] Radescu E E, Vaman G. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles[J]. Physical Review E, 65, 046609(2002).

    [5] Naumov I I, Bellaiche L, Fu H X. Unusual phase transitions in ferroelectric nanodisks and nanorods[J]. Nature, 432, 737-740(2004).

    [6] Li D M, Yuan S, Yang R C et al. Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 40, 0816001(2020).

    [7] Mao Q J, Feng C Z. Absorptance properties of nested-ring metamaterial absorbers based on magnetic polaritons[J]. Acta Optica Sinica, 39, 0816001(2019).

    [8] Meng Q L, Zhang Y, Zhang B et al. Characteristics of optically tunable multi-band terahertz metamaterial absorber[J]. Laser & Optoelectronics Progress, 56, 101603(2019).

    [9] Wang C S, Jiang D F, Jiang X W. Polarization independent high absorption efficiency wide absorption bandwidth metamaterial absorber[J]. Laser & Optoelectronics Progress, 57, 031601(2020).

    [10] Wang Y R, Liang L J, Yang M S et al. Terahertz metamaterial based on controllable electromagnetic induced transparency structure[J]. Laser & Optoelectronics Progress, 56, 041603(2019).

    [11] Fu Y Y, Xu Y D, Chen H Y. Zero index metamaterials with PT symmetry in a waveguide system[J]. Optics Express, 24, 1648-1657(2016).

    [12] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000).

    [13] Lin Y C, Liu F, Huang Y D. Cherenkov radiation based on metamaterials[J]. Acta Physica Sinica, 69, 154103(2020).

    [14] Gupta M, Srivastava Y K, Manjappa M et al. Sensing with toroidal metamaterial[J]. Applied Physics Letters, 110, 121108(2017).

    [15] Zhao J F, Zhang Y W, Li Y H et al. Wireless power transfer system based on toroidal metamaterials[J]. Acta Physica Sinica, 65, 168801(2016).

    [16] Zhang X L, Wang S B, Lin Z F et al. Optical force on toroidal nanostructures: toroidal dipole versus renormalized electric dipole[J]. Physical Review A, 92, 043804(2015).

    [17] Jin R C, Li J, Wang Y H et al. Optical force enhancement and annular trapping by plasmonic toroidal resonance in a double-disk metastructure[J]. Optics Express, 24, 27563-27568(2016).

    [18] Nemkov N A, Basharin A A, Fedotov V A. Nonradiating sources, dynamic anapole, and Aharonov-Bohm effect[J]. Physical Review B, 95, 165134(2017).

    [19] Li J, Wang Y H, Jin R C et al. Toroidal-dipole induced plasmonic perfect absorber[J]. Journal of Physics D, 50, 485301(2017).

    [20] Xiang T, Lei T, Huang X J et al. Anapole metamaterial absorber in microwave frequency range[J]. Applied Physics Express, 11, 117302(2018).

    [21] Zografopoulos D C, Ferraro A, Algorri J F et al. All-dielectric silicon metasurface with strong subterahertz toroidal dipole resonance[J]. Advanced Optical Materials, 7, 1900777(2019).

    [22] Wang W D, Qi J G. Polarization sensitive toroidal dipole metasurface for switch and magnetic field tunability[J]. Applied Physics Express, 12, 065004(2019).

    [23] Luo X, Li X J, Lang T T et al. Excitation of high Q toroidal dipole resonance in an all-dielectric metasurface[J]. Optical Materials Express, 10, 358-368(2020).

    [24] Zografopoulos D C, Algorri J F, Ferraro A et al. Toroidal metasurface resonances in microwave waveguides[J]. Scientific Reports, 9, 7544(2019).

    [25] Kaelberer T, Fedotov V A, Papasimakis N et al. Toroidal dipolar response in a metamaterial[J]. Science, 330, 1510-1512(2010).

    [26] Dong Z G, Zhu J, Rho J et al. Optical toroidal dipolar response by an asymmetric double-bar metamaterial[J]. Applied Physics Letters, 101, 144105(2012).

    [27] Zhou C B, Li S Y, Wang Y et al. Multiple toroidal dipole Fano resonances of asymmetric dielectric nanohole arrays[J]. Physical Review B, 100, 195306(2019).

    Tianyu Xiang, Tao Lei, Zhaoyang Shen, Xiaojun Huang, Helin Yang. Fano Resonances in Planar Toroidal Metamaterials[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0916001
    Download Citation