• Journal of Innovative Optical Health Sciences
  • Vol. 1, Issue 1, 63 (2008)
AMIR LIVNAT*, MICHAEL TOLMASOV, EFRAT BARBIRO-MICHAELY, and AVRAHAM MAYEVSKY
Author Affiliations
  • The Mina & Everard Goodman Faculty of Life-Sciences and The Gonda Multidisciplinary Brain Research Center Bar-Ilan University Ramat-Gan, 52900, Israel
  • show less
    DOI: Cite this Article
    AMIR LIVNAT, MICHAEL TOLMASOV, EFRAT BARBIRO-MICHAELY, AVRAHAM MAYEVSKY. REAL-TIME MONITORING OF MITOCHONDRIAL FUNCTION AND CEREBRAL BLOOD FLOW FOLLOWING FOCAL ISCHEMIA IN RATS[J]. Journal of Innovative Optical Health Sciences, 2008, 1(1): 63 Copy Citation Text show less
    References

    [1] P. Lipton, “Ischemic cell death in brain neurons,” Physiol Rev 79, 1431–1568 (1999).

    [2] H. Nagasawa and K. Kogure, “Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion,” Stroke 20, 1037–1043 (1989).

    [3] A. Mayevsky, “Brain NADH redox state monitored in vivo by fiber optic surface fluorometry,” Brain Res 319, 49–68 (1984).

    [4] A. Mayevsky, S. Meilin, T. Manor, E. Ornstein, N. Zarchin and J. Sonn, “Multiparametric monitoring of brain oxygen balance under experimental and clinical conditions,” Neurol Res 20 Suppl 1:S76–80., S76–S80 (1998).

    [5] B. K. Siesjo, “Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology,” J Neurosurg 77, 169–184 (1992).

    [6] G. Gido, T. Kristian, B. K. Siesjo and R. C. Koehler, “Extracellular potassium in a neocortical core area after transient focal ischemia,” Stroke 28, 206–210 (1997).

    [7] M. D. Ginsberg, “Adventures in the Pathophysiology of Brain Ischemia: Penumbra, Gene Expression, Neuroprotection: The 2002 Thomas Willis Lecture,” Stroke 34, 214–223 (2003).

    [8] N. R. Sims and M. F. Anderson, “Mitochondrial contributions to tissue damage in stroke,” Neurochem Int 40, 511–526 (2002).

    [9] A. Mayevsky and B. Chance, “Oxidation-reduction states of NADH in vivo: From animals to clinical use,” Mitochondrion 7, 330–339 (2007).

    [10] I. F. Pestalozza, L. S. Di, M. Calabresi and G. L. Lenzi, “Ischaemic penumbra: highlights,” Clin Exp Hypertens 24, 517–529 (2002).

    [11] E. Barbiro-Michaely, M. Tolmasov, S. Rinkevich-Shop, J. Sonn and A. Mayevsky, “Can the “brain-sparing effect” be detected in a small-animal model ,” Med Sci Monit 13, BR211–BR219 (2007).

    [12] A. Mayevsky, S. Meilin, T. Manor, N. Zarchin and J. Sonn, “Optical monitoring of NADH redox state and blood flow as indicators of brain energy balance,” Adv Exp Med Biol 471:133–40, 133–140 (1999).

    [13] A. Mayevsky and B. Chance, “Intracellular oxidation reduction state measured in situ by a multichannel fiber-optic-surface fluorometer,” Science 217, 537–540 (1982).

    [14] H. Yanamoto, I. Nagata, Y. Niitsu, J. H. Xue, Z. Zhang and H. Kikuchi, “Evaluation of MCAO stroke models in normotensive rats: standardized neocortical infarction by the 3VO technique,” Experimental Neurology 182, 261–274 (2003).

    [15] E. Z. Longa, P. R.Weinstein, S. Carlson and R. Cummins, “Reversible middle cerebral artery occlusion without craniectomy in rats,” Stroke 20, 84–91 (1989).

    [16] A. Mayevsky and G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am J Physiol Cell Physiol 292, C615–C640 (2007).

    AMIR LIVNAT, MICHAEL TOLMASOV, EFRAT BARBIRO-MICHAELY, AVRAHAM MAYEVSKY. REAL-TIME MONITORING OF MITOCHONDRIAL FUNCTION AND CEREBRAL BLOOD FLOW FOLLOWING FOCAL ISCHEMIA IN RATS[J]. Journal of Innovative Optical Health Sciences, 2008, 1(1): 63
    Download Citation