• Laser & Optoelectronics Progress
  • Vol. 54, Issue 6, 60002 (2017)
Cui Quan1、2, Chen Zhongyun1、2, Zhang Zhihong1、2, Luo Qingming1、2, and Fu Ling1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.060002 Cite this Article Set citation alerts
    Cui Quan, Chen Zhongyun, Zhang Zhihong, Luo Qingming, Fu Ling. Recent Advances in Multicolor Two-Photon Imaging Technique[J]. Laser & Optoelectronics Progress, 2017, 54(6): 60002 Copy Citation Text show less
    References

    [1] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73-76.

    [2] Drobizhev M, Makarov N S, Tillo S E, et al. Two-photon absorption properties of fluorescent proteins[J]. Nature Methods, 2011, 8(5): 393-399.

    [3] Ye C X, Ma H L, Liang W Z. Two-photon absorption properties of chromophores of a few fluorescent proteins: a theoretical investigation[J]. Acta Physico-Chimica Sinica, 2016, 32: 301-312.

    [4] Li C Q, Pitsillides C, Runnels J M, et al. Multiphoton microscopy of live tissues with ultraviolet autofluorescence[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(3): 516-23.

    [5] Li D, Zheng W, Qu J Y. Two-photon autofluorescence microscopy of multicolor excitation[J]. Optics Letters, 2009, 34(2): 202-204.

    [6] Weber T, Kster R. Genetic tools for multicolor imaging in zebrafish larvae[J]. Methods, 2013, 62(3): 279-291.

    [7] Piatkevich K D, Hulit J, Subach O M, et al. Monomeric red fluorescent proteins with a large Stokes shift[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(12): 5369-5374.

    [8] Morozova K S, Piatkevich K D, Gould T J, et al. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy[J]. Biophysical Journal, 2010, 99(2): L13-L15.

    [9] Ghosh S, Yu C L, Ferraro D J, et al. Blue protein with red fluorescence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(41): 11513-11518.

    [10] Rodriguez E A, Tran G N, Gross L A, et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein[J]. Nature Methods, 2016, 13(9): 763-769.

    [11] Zhang X, Zhang M S, Li D, et al. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(37): 10364-10369.

    [12] Lin Juqiang, Chen Rong, Cai Changmei, et al. Biomedical applications of imaging microscopy based on protease-activated fluorescent probe[J]. Laser & Optoelectronics Progress, 2008, 45(4): 50-55.

    [13] Sato M, Kawano M, Yanagawa Y, et al. In vivo two-photon imaging of striatal neuronal circuits in mice[J]. Neurobiology of Learning and Memory, 2016, 135: 146-151.

    [14] Tarus D, Hamard L, Caraguel F, et al. Design of hyaluronic acid hydrogels to promote neurite outgrowth in three dimensions[J]. Acs Applied Materials & Interfaces, 2016, 8(38): 25051-25059.

    [15] Fumagalli S, Ortolano F, De Simoni M G. A close look at brain dynamics: cells and vessels seen by in vivo two-photon microscopy[J]. Progress in Neurobiology, 2014, 121: 36-54.

    [16] Zhou Y, Kang D Y, Yang Z R, et al. Imaging normal and cancerous human gastric muscular layer in transverse and longitudinal sections by multiphoton microscopy[J]. Scanning, 2016, 38(4): 357-364.

    [17] Li L H, Chen Z F, Wang X F, et al. Visualization of tumor response to neoadjuvant therapy for rectal carcinoma by nonlinear optical imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 22(3): 158-163.

    [18] Zhao Z, Zhu X P, Cui K, et al. In vivo visualization and characterization of epithelial-mesenchymal transition in breast tumors[J]. Cancer Research, 2016, 76(8): 2094-2104.

    [19] Yu Biying, Cai Hemei, Li Zhifang, et al. Two-photon fluorescence imaging and its analysis for early acute myocardial ischemia of rat[J]. Laser & Optoelectronics Progress, 2012, 49(2): 021703.

    [20] Wei Xunbin, Guo Jin, Li Yan, et al. Progress of in vivo optical imaging[J]. Laser & Optoelectronics Progress, 2009, 46(8): 41-47.

    [21] Katakai T, Kinashi T. Microenvironmental control of high-speed interstitial T cell migration in the lymph node[J]. Frontiers in Immunology, 2016, 7: 1-8.

    [22] Luu L, Coombes J L. Dynamic two-photon imaging of the immune response to Toxoplasma gondii infection[J]. Parasite Immunology, 2015, 37(3): 118-126.

    [23] Miller M J, Wei S H, Parker I, et al. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node[J]. Science, 2002, 296(5574): 1869-1873.

    [24] Ipponjima S, Hibi T, Nemoto T. Three-dimensional analysis of cell division orientation in epidermal basal layer using intravital two-photon microscopy[J]. Plos One, 2016, 11(9): e0163199.

    [25] Finnoy A, Olstad K, Lilledahl M B. Second harmonic generation imaging reveals a distinct organization of collagen fibrils in locations associated with cartilage growth[J]. Connective Tissue Research, 2016, 57: 374-387.

    [26] Alonzo C A, Karaliota S, Pouli D, et al. Two-photon excited fluorescence of intrinsic fluorophores enables label-free assessment of adipose tissue function[J]. Scientific Reports, 2016, 6: 31012.

    [27] Zhang X Z, Liu N R, Mak P U, et al. Three-dimensional segmentation and quantitative measurement of the aqueous outflow system of intact mouse eyes based on spectral two-photon microscopy techniques[J]. Investigative Ophthalmology & Visual Science, 2016, 57(7): 3159-3167.

    [28] Santisakultarm T P, Kersbergen C J, Bandy D K, et al. Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets[J]. Journal of Neuroscience Methods, 2016, 271: 55-64.

    [29] Kawano H, Kogure T, Abe Y, et al. Two-photon dual-color imaging using fluorescent proteins[J]. Nature Methods, 2008, 5(5): 373-374.

    [30] Germain R N, Miller M J, Dustin M L, et al. Dynamic imaging of the immune system: progress, pitfalls and promise[J]. Nature Reviews Immunology, 2006, 6(7): 497-507.

    [31] Tragardh J, Murtagh M, Robb G, et al. Two-color, two-photon imaging at long excitation wavelengths using a diamond raman laser[J]. Microscopy and Microanalysis, 2016, 22(4): 803-807.

    [32] Ricard C, Lamasse L, Jaouen A, et al. Combination of an optical parametric oscillator and quantum-dots 655 to improve imaging depth of vasculature by intravital multicolor two-photon microscopy[J]. Biomedical Optics Express, 2016, 7(6): 2362-2372.

    [33] Herz J, Siffrin V, Hauser A E, et al. Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator[J]. Biophysical Journal, 2010, 98(4): 715-723.

    [34] Eissing N, Heger L, Baranska A, et al. Easy performance of 6-color confocal immunofluorescence with 4-laser line microscopes[J]. Immunology Letters, 2014, 161(1): 1-5.

    [35] Debarre D, Olivier N, Supatto W, et al. Mitigating phototoxicity during multiphoton microscopy of live drosophila embryos in the 1.0-1.2 μm wavelength range[J]. Plos One, 2014, 9(8): e104250.

    [36] Hall A M, Molitoris B A. Dynamic multiphoton microscopy: focusing light on acute kidney injury[J]. Physiology, 2014, 29(5): 334-342.

    [37] Freeman K, Tao W, Sun H L, et al. In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging[J]. Journal of Neuroscience Methods, 2014, 221(2): 48-61.

    [38] Entenberg D, Wyckoff J, Gligorijevic B, et al. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging[J]. Nature Protocols, 2011, 6(10): 1500-1520.

    [39] Li C Q, Pastila R K, Lin C P. Label-free imaging immune cells and collagen in atherosclerosis with two-photon and second harmonic generation microscopy[J]. Journal of Innovative Optical Health Sciences, 2016, 9(1): 272.

    [40] Yamanaka M, Saito K, Smith N I, et al. Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging[J]. Journal of Biomedical Optics, 2015, 20(10): 101202.

    [41] Mahou P, Zimmerley M, Loulier K, et al. Multicolor two-photon tissue imaging by wavelength mixing[J]. Nature Methods, 2012, 9(8): 815-818.

    [42] Brenner M H, Cai D, Swanson J A, et al. Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser[J]. Optics Express, 2013, 21(14): 17256-17264.

    [43] Batista A, Breunig H G, Uchugonova A, et al. Two-photon autofluorescence lifetime and SHG imaging of healthy and diseased human corneas[C]. SPIE, 2015, 9307: 93071Q.

    [44] Pope I, Langbein W, Watson P, et al. Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti∶Sa laser[J]. Optics Express, 2013, 21(6): 7096-7106.

    [45] Pestov D, Xu B W, Li H W, et al. Delivery and characterization of sub-8fs laser pulses at the imaging plane of a two-photon microscope[C]. SPIE, 2011, 7903(1): 79033B.

    [46] Pillai R S, Boudoux C, Labroille G, et al. Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses[J]. Optics Express, 2009, 17(15): 12741-12752.

    [47] Cui Quan, Liang Xiaobao, Huang Shun, et al. Supercontinuum for multicolor two-photon microscopy[J]. Acta Laser Biology Sinica, 2015, 24(1): 1-7.

    [48] Wang Jie, Lin Feng. Progress of two-photon laser scanning fluorescence microendoscope based on optical fiber[J]. Laser & Optoelectronics Progress, 2010, 47(8): 38-44.

    [49] Liang X B, Fu L. Enhanced self-phase modulation enables a 700-900 nm linear compressible continuum for multicolor two-photon microscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(2): 42-49.

    [50] Tu H H, Boppart S A. Coherent fiber supercontinuum for biophotonics[J]. Laser & Photonics Reviews, 2013, 7(5): 628-645.

    [51] Graf B W, Jiang Z, Tu H H, et al. Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy[J]. Journal of Biomedical Optics, 2009, 14 (3): 034019.

    [52] Lefort C, O′Connor R P, Blanquet V, et al. Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source[J]. Journal of Biophotonics, 2016, 9(7): 709-714.

    [53] He J P, Miyazaki J, Wang N, et al. Biological imaging with nonlinear photothermal microscopy using a compact supercontinuum fiber laser source[J]. Optics Express, 2015, 23(8): 9762-9771.

    [54] Tao W, Bao H C, Gu M. Two-photon-excited photoluminescence and heating of gold nanorods through absorption of supercontinuum light[J]. Applied Physics B, 2013, 112(2): 153-158.

    [55] Liu Y, Tu H H, Benalcazar W A, et al. Multimodal nonlinear microscopy by shaping a fiber supercontinuum from 900 to 1160 nm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(3): 1209-1214.

    [56] Teh S K, Zheng W, Li S X, et al. Multimodal nonlinear optical microscopy improves the accuracy of early diagnosis of squamous intraepithelial neoplasia[J]. Journal of Biomedical Optics, 2013, 18(3): 036001.

    [57] Wang K, Liu T M, Wu J W, et al. Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy[J]. Biomedical Optics Express, 2012, 3(9): 1972-1977.

    [58] He J P, Wang N, Kobayashi T. Generation of stable two-color laser pulses in photonic crystal fiber for microscopy[J]. Japanese Journal of Applied Physics, 2014, 53(9): 092704.

    [59] Chan M C, Lien C H, Lu J Y, et al. High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy[J]. Optics Express, 2014, 22(8): 9498-9507.

    [60] Palero J A, Boer V O, Vijverberg J C, et al. Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source[J]. Optics Express, 2005, 13(14): 5363-5368.

    [61] Tragardh J, Robb G, Amor R, et al. Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti∶Sapphire laser[J]. Journal of Microscopy, 2015, 259(3): 210-218.

    [62] Botchway S W, Scherer K M, Hook S, et al. A series of flexible design adaptations to the Nikon E-C1 and E-C2 confocal microscope systems for UV, multiphoton and FLIM imaging[J]. Journal of Microscopy, 2015, 258(1): 68-78.

    [63] Makarov N S, Drobizhev M, Rebane A. Two-photon absorption standards in the 550-1600 nm excitation wavelength range[J]. Optics Express, 2008, 16(6): 4029-4047.

    [64] Garini Y, Young I T, Mc Namara G. Spectral imaging: principles and applications[J]. Cytometry Part A, 2006, 69A(8): 735-747.

    [65] Zhou L L, El-Deiry W S. Multispectral fluorescence imaging[J]. Journal of Nuclear Medicine, 2009, 50(10): 1563-1566.

    [66] Akbari H, Halig L V, Schuster D M, et al. Hyperspectral imaging and quantitative analysis for prostate cancer detection[J]. Journal of Biomedical Optics, 2012, 17(7): 076005.

    [67] Elliott A D, Gao L, Ustione A, et al. Real-time hyperspectral fluorescence imaging of pancreatic beta-cell dynamics with the image mapping spectrometer[J]. Journal of Cell Science, 2012, 125(20): 4833-4840.

    [68] Kiyotoki S, Nishikawa J, Okamoto T, et al. New method for detection of gastric cancer by hyperspectral imaging: a pilot study[J]. Journal of Biomedical Optics, 2013, 18(2): 026010.

    [69] Mori M, Chiba T, Nakamizo A, et al. Intraoperative visualization of cerebral oxygenation using hyperspectral image data: a two-dimensional mapping method[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(6): 1059-1072.

    [70] He S C, Ye C, Sun Q Q, et al. Label-free nonlinear optical imaging of mouse retina[J]. Biomedical Optics Express, 2015, 6(3): 1055-1066.

    [71] Palero J A, Bader A N, de Bruijn H S, et al. In vivo monitoring of protein-bound and free NADH during ischemia by nonlinear spectral imaging microscopy[J]. Biomedical Optics Express, 2011, 2(5): 1030-1039.

    [72] Liang X B, Hu W Y, Fu L. Pulse compression in two-photon excitation fluorescence microscopy[J]. Optics Express, 2010, 18(14): 14893-14904.

    [73] Xu B W, Gunn J M, Dela Cruz J M, et al. Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses[J]. Journal of the Optical Society of America B, 2006, 23(4): 750-759.

    [74] Patas A, Achazi G, Hermes N, et al. Contrast optimization of two-photon processes after a microstructured hollow-core fiber demonstrated for dye molecules[J]. Applied Physics B, 2013, 112(4): 579-586.

    [75] Silberberg Y. Quantum coherent control for nonlinear spectroscopy and microscopy[J]. Annual Review of Physical Chemistry, 2009, 60: 277-292.

    CLP Journals

    [1] Wu Danlei, Feng Lishuang, Wang Aimin. Optical Design of Two-Photon Endoscopy Objective with High Collection Efficiency[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71801

    Cui Quan, Chen Zhongyun, Zhang Zhihong, Luo Qingming, Fu Ling. Recent Advances in Multicolor Two-Photon Imaging Technique[J]. Laser & Optoelectronics Progress, 2017, 54(6): 60002
    Download Citation