• Laser & Optoelectronics Progress
  • Vol. 58, Issue 16, 1600001 (2021)
Jianglei Di1、2、*, Ju Tang1、2, Ji Wu1、2, Kaiqiang Wang1、2, Zhenbo Ren1、2, Mengmeng Zhang1、2, and Jianlin Zhao1、2、**
Author Affiliations
  • 1Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
  • 2Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
  • show less
    DOI: 10.3788/LOP202158.1600001 Cite this Article Set citation alerts
    Jianglei Di, Ju Tang, Ji Wu, Kaiqiang Wang, Zhenbo Ren, Mengmeng Zhang, Jianlin Zhao. Research Progress in the Applications of Convolutional Neural Networks in Optical Information Processing[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1600001 Copy Citation Text show less
    References

    [1] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 2, 359-366(1989).

    [2] Gardner M W, Dorling S R. Artificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciences[J]. Atmospheric Environment, 32, 2627-2636(1998).

    [3] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 20, 273-297(1995).

    [4] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 313, 504-507(2006).

    [5] Goodfellow I, Bengio Y, Courville A et al. Deep learning[M](2016).

    [6] LeCun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [7] Schuster M, Paliwal K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 45, 2673-2681(1997).

    [8] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 18, 1527-1554(2006).

    [9] Goodfellow I, Pouget-Abadie J, Mirza M et al. Generative adversarial networks[J]. Communications of the ACM, 63, 139-144(2020).

    [10] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 25, 1097-1105(2012).

    [11] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions[C]. //2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA., 1-9(2015).

    [12] Mirza A H, Cosan S. Computer network intrusion detection using sequential LSTM neural networks autoencoders[C]. //2018 26th Signal Processing and Communications Applications Conference (SIU), May 2-5, 2018, Izmir, Turkey., 1-4(2018).

    [13] Karpathy A, Li F F. Deep visual-semantic alignments for generating image descriptions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 664-676(2017).

    [14] Mikolov T, Karafiát M, Burget L et al. Recurrent neural network based language model[C]. //Eleventh annual conference of the international speech communication association, September 26-30, 2010, Makuhari, Chiba, Japan, 1045-1048(2010).

    [15] Zhou H Q, Huang L L, Wang Y T. Deep learning algorithm and its application in optics[J]. Infrared and Laser Engineering, 48, 1226004(2019).

    [16] Feng W, Zhao X D, Wu G M et al. Computational ghost imaging method based on convolutional neural network[J]. Acta Photonica Sinica, 49, 0610002(2020).

    [17] Wang F, Wang H, Bian Y M et al. Applications of deep learning in computational imaging[J]. Acta Optica Sinica, 40, 0111002(2020).

    [18] Zuo C, Feng S J, Zhang X Y et al. Deep learning based computational imaging: status, challenges, and future[J]. Acta Optica Sinica, 40, 0111003(2020).

    [19] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2021-04-20]. https://arxiv.org/abs/1409.1556

    [20] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]. //2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA., 3431-3440(2015).

    [21] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. //Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [22] Mirza M, Osindero S. Conditional generative adversarial nets[EB/OL]. (2014-11-06)[2021-04-20]. https://arxiv.org/abs/1411.1784

    [23] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C]. //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 770-778(2016).

    [24] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA., 7132-7141(2018).

    [25] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. //Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 3-19(2018).

    [26] Huang G, Liu Z, van der Maaten L et al. Densely connected convolutional networks[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 2261-2269(2017).

    [27] Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 6, 1-48(2019).

    [28] Gupta D, Jain S, Shaikh F et al. Transfer learning & the art of using pre-trained models in deep learning[EB/OL]. (2017-06-01)[2021-04-20]. https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/

    [29] Srivastava N, Hinton G, Krizhevsky A et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research, 15, 1929-1958(2014).

    [30] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [31] Sinha A, Lee J, Li S et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117-1125(2017).

    [32] Rivenson Y, Zhang Y, Günaydın H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light, Science & Applications, 7, 17141(2018).

    [33] Wang H, Lyu M, Situ G H. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction[J]. Optics Express, 26, 22603-22614(2018).

    [34] Zhang G, Guan T, Shen Z Y et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express, 26, 19388-19405(2018).

    [35] Ren Z B, Xu Z M, Lam E Y. End-to-end deep learning framework for digital holographic reconstruction[J]. Advanced Photonics, 1, 016004(2019).

    [36] Wang K, Dou J, Kemao Q et al. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction[J]. Optics Letters, 44, 4765-4768(2019).

    [37] Wang K, Kemao Q, Di J et al. Y4-Net: a deep learning solution to one-shot dual-wavelength digital holographic reconstruction[J]. Optics Letters, 45, 4220-4223(2020).

    [38] Di J L, Wu J, Wang K Q et al. Quantitative phase imaging using deep learning-based holographic microscope[J]. Frontiers in Physics, 9, 651313(2021).

    [39] Moon I, Jaferzadeh K, Kim Y et al. Noise-free quantitative phase imaging in Gabor holography with conditional generative adversarial network[J]. Optics Express, 28, 26284-26301(2020).

    [40] Fonseca E S, Fiadeiro P T, Pereira M et al. Comparative analysis of autofocus functions in digital in-line phase-shifting holography[J]. Applied Optics, 55, 7663-7674(2016).

    [41] Wang L, Zhao J L, Di J L et al. Fast extended focused imaging in digital holography using a graphics processing unit[J]. Optics Letters, 36, 1620-1622(2011).

    [42] Pitkäaho T, Manninen A, Naughton T J. Performance of autofocus capability of deep convolutional neural networks in digital holographic microscopy[C]. //Digital Holography and Three-Dimensional Imaging 2017, May 29-June 1, 2017, JeJu Island, Republic of Korea, W2A, 5(2017).

    [43] Pitkäaho T, Manninen A, Naughton T J. Focus classification in digital holographic microscopy using deep convolutional neural networks[C]. //European Conference on Biomedical Optics 2017, June 25-29, 2017, Munich, Germany, 104140K(2017).

    [44] Pitkäaho T, Manninen A, Naughton T J. Focus prediction in digital holographic microscopy using deep convolutional neural networks[J]. Applied Optics, 58, A202-A208(2019).

    [45] Ren Z B, Xu Z M, Lam E Y. Learning-based nonparametric autofocusing for digital holography[J]. Optica, 5, 337-344(2018).

    [46] Jaferzadeh K, Hwang S H, Moon I et al. No-search focus prediction at the single cell level in digital holographic imaging with deep convolutional neural network[J]. Biomedical Optics Express, 10, 4276-4289(2019).

    [47] Son K, Jeong W, Jeon W et al. Autofocusing algorithm for a digital holographic imaging system using convolutional neural networks. Japanese Journal of Applied Physics, 57, 09SB02(2018).

    [48] Wu Y C, Rivenson Y, Zhang Y B et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery[J]. Optica, 5, 704-710(2018).

    [49] Wu Y C, Ray A, Wei Q S et al. Deep learning enables high-throughput analysis of particle-aggregation-based biosensors imaged using holography[J]. ACS Photonics, 6, 294-301(2019).

    [50] Xiao W, Wang Q X, Pan F et al. Adaptive frequency filtering based on convolutional neural networks in off-axis digital holographic microscopy[J]. Biomedical Optics Express, 10, 1613-1626(2019).

    [51] Liu T, Wei Z, Rivenson Y et al. Deep learning-based color holographic microscopy[J]. Journal of Biophotonics, 12, e201900107(2019).

    [52] Go T, Lee S, You D et al. Deep learning-based hologram generation using a white light source[J]. Scientific Reports, 10, 8977(2020).

    [53] Wu Y C, Luo Y L, Chaudhari G et al. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram[J]. Light, Science & Applications, 8, 25(2019).

    [54] Li J S, Zhang Q N, Zhong L Y et al. Quantitative phase imaging in dual-wavelength interferometry using a single wavelength illumination and deep learning[J]. Optics Express, 28, 28140-28153(2020).

    [55] Lei H, Qian K M, Bing P et al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry[J]. Optics and Lasers in Engineering, 48, 141-148(2010).

    [56] Zhu X J, Chen Z Q, Tang C. Variational image decomposition for automatic background and noise removal of fringe patterns[J]. Optics Letters, 38, 275-277(2013).

    [57] Li B Y, Tang C, Zhu X J et al. Shearlet transform for phase extraction in fringe projection profilometry with edges discontinuity[J]. Optics and Lasers in Engineering, 78, 91-98(2016).

    [58] Feng S J, Chen Q, Gu G H et al. Fringe pattern analysis using deep learning[J]. Advanced Photonics, 1, 025001(2019).

    [59] Qian J M, Feng S J, Li Y X et al. Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry[J]. Optics Letters, 45, 1842-1845(2020).

    [60] Yu H T, Chen X Y, Zhang Z et al. Dynamic 3-D measurement based on fringe-to-fringe transformation using deep learning[J]. Optics Express, 28, 9405-9418(2020).

    [61] Yu H T, Zheng D L, Fu J A et al. Deep learning-based fringe modulation-enhancing method for accurate fringe projection profilometry[J]. Optics Express, 28, 21692-21703(2020).

    [62] Kando D, Tomioka S, Miyamoto N et al. Phase extraction from single interferogram including closed-fringe using deep learning[J]. Applied Sciences, 9, 3529(2019).

    [63] Li H W, Zhang C X, Song N F et al. Deep learning-based interference fringes detection using convolutional neural network[J]. IEEE Photonics Journal, 11, 1-14(2019).

    [64] Yan K T, Yu Y J, Huang C T et al. Fringe pattern denoising based on deep learning[J]. Optics Communications, 437, 148-152(2019).

    [65] Shi J S, Zhu X J, Wang H Y et al. Label enhanced and patch based deep learning for phase retrieval from single frame fringe pattern in fringe projection 3D measurement[J]. Optics Express, 27, 28929-28943(2019).

    [66] Yang Y, Hou Q Y, Li Y et al. Phase error compensation based on Tree-Net using deep learning[J]. Optics and Lasers in Engineering, 143, 106628(2021).

    [67] Nguyen H, Tran T, Wang Y Z et al. Three-dimensional shape reconstruction from single-shot speckle image using deep convolutional neural networks[J]. Optics and Lasers in Engineering, 143, 106639(2021).

    [68] Feng S J, Zuo C, Yin W et al. Application of deep learning technology to fringe projection 3D imaging[J]. Infrared and Laser Engineering, 49, 030301(2020).

    [69] Waghmare R G, Sukumar P R, Subrahmanyam G R K S et al. Particle-filter-based phase estimation in digital holographic interferometry[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 33, 326-332(2016).

    [70] Geng J. Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics, 3, 128-160(2011).

    [71] Yu H W, Lan Y, Xu J Y et al. Large-scale L 0 -norm and L 1 -norm 2-D phase unwrapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 4712-4728(2017).

    [72] Zheng D L, Da F P, Qian K M et al. Phase-shifting profilometry combined with Gray-code patterns projection: unwrapping error removal by an adaptive median filter[J]. Optics Express, 25, 4700-4713(2017).

    [73] Zheng D, Kemao Q, Da F et al. Ternary Gray code-based phase unwrapping for 3D measurement using binary patterns with projector defocusing[J]. Applied Optics, 56, 3660-3665(2017).

    [74] Su X Y, Chen W J. Reliability-guided phase unwrapping algorithm: a review[J]. Optics and Lasers in Engineering, 42, 245-261(2004).

    [75] Herráez M A, Burton D R, Lalor M J et al. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path[J]. Applied Optics, 41, 7437-7444(2002).

    [76] Flynn T J. Two-dimensional phase unwrapping with minimum weighted discontinuity[J]. Journal of the Optical Society of America A, 14, 2692-2701(1997).

    [77] Arines J, Ares J. Linear squares modal estimation of wrapped phases: application to phase unwrapping[J]. Proceedings of SPIE, 4829, 178-179(2003).

    [78] Zhang J C, Tian X B, Shao J B et al. Phase unwrapping in optical metrology via denoised and convolutional segmentation networks[J]. Optics Express, 27, 14903-14912(2019).

    [79] Wang K Q, Li Y, Qian K M et al. One-step robust deep learning phase unwrapping[J]. Optics Express, 27, 15100-15115(2019).

    [80] Zhang T, Jiang S W, Zhao Z X et al. Rapid and robust two-dimensional phase unwrapping via deep learning[J]. Optics Express, 27, 23173-23185(2019).

    [81] Qin Y, Wan S J, Wan Y H et al. Direct and accurate phase unwrapping with deep neural network[J]. Applied Optics, 59, 7258-7267(2020).

    [82] Liang J, Zhang J C, Shao J B et al. Deep convolutional neural network phase unwrapping for fringe projection 3D imaging[J]. Sensors, 20, 3691(2020).

    [83] Qian J M, Feng S J, Tao T Y et al. Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement[J]. APL Photonics, 5, 046105(2020).

    [84] Yin W, Chen Q, Feng S et al. Temporal phase unwrapping using deep learning[J]. Scientific Reports, 9, 20175(2019).

    [85] Spoorthi G E, Gorthi R K S S, Gorthi S. PhaseNet 2.0: phase unwrapping of noisy data based on deep learning approach[J]. IEEE Transactions on Image Processing, 29, 4862-4872(2020).

    [86] Zhao Z, Li B, Kang X Q et al. Phase unwrapping method for point diffraction interferometer based on residual auto encoder neural network[J]. Optics and Lasers in Engineering, 138, 106405(2021).

    [87] Erkmen B I. Computational ghost imaging for remote sensing[J]. Journal of the Optical Society of America A, 29, 782-789(2012).

    [88] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 21, 12507-12518(2013).

    [89] Tanha M, Ahmadi-Kandjani S, Kheradmand R et al. Computational fluorescence ghost imaging[J]. The European Physical Journal D, 67, 44(2013).

    [90] Clemente P, Durán V, Torres-Company V et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 35, 2391-2393(2010).

    [91] Sun B Q, Welsh S S, Edgar M P et al. Normalized ghost imaging[J]. Optics Express, 20, 16892-16901(2012).

    [92] Ferri F, Magatti D, Lugiato L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).

    [93] Welsh S S, Edgar M P, Bowman R et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 21, 23068-23074(2013).

    [94] Shimobaba T, Endo Y, Nishitsuji T et al. Computational ghost imaging using deep learning[J]. Optics Communications, 413, 147-151(2018).

    [95] Lyu M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017).

    [96] He Y C, Wang G, Dong G X et al. Ghost imaging based on deep learning[J]. Scientific Reports, 8, 1-7(2018).

    [97] Zhai X, Cheng Z, Liang Z et al. Computational ghost imaging via adaptive deep dictionary learning[J]. Applied Optics, 58, 8471-8478(2019).

    [98] Li C. An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing[D](2010).

    [99] Bian T, Yi Y, Hu J et al. A residual-based deep learning approach for ghost imaging[J]. Scientific Reports, 10, 12149(2020).

    [100] Li F Q, Zhao M, Tian Z M et al. Compressive ghost imaging through scattering media with deep learning[J]. Optics Express, 28, 17395-17408(2020).

    [101] Rizvi S, Cao J, Zhang K Y et al. DeepGhost: real-time computational ghost imaging via deep learning[J]. Scientific Reports, 10, 11400(2020).

    [102] Wu H, Wang R, Zhao G et al. Sub-Nyquist computational ghost imaging with deep learning[J]. Optics Express, 28, 3846-3853(2020).

    [103] Wu H, Wang R Z, Zhao G P et al. Deep-learning denoising computational ghost imaging[J]. Optics and Lasers in Engineering, 134, 106183(2020).

    [104] Wang F, Wang H, Wang H C et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).

    [105] Hu H K, Sun S, Lin H Z et al. Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects[J]. Optics Express, 28, 37284-37293(2020).

    [106] Huang W, Jiao S M, Xiao C Y. Image processing algorithms related to single-pixel imaging: a review[J]. Laser & Optoelectronics Progress, 58, 1011021(2021).

    [107] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [108] Lin Z Q, Ma X, Lin J X et al. Fourier ptychographic microscopy based on rotating arc-shaped array of LEDs[J]. Laser & Optoelectronics Progress, 55, 071102(2018).

    [109] Shen C, Chan A C S, Chung J et al. Computational aberration correction of VIS-NIR multispectral imaging microscopy based on Fourier ptychography[J]. Optics Express, 27, 24923-24937(2019).

    [110] Zuo C, Sun J S, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 24, 20724-20744(2016).

    [111] Zhou A, Wang W, Chen N et al. Fast and robust misalignment correction of Fourier ptychographic microscopy for full field of view reconstruction[J]. Optics Express, 26, 23661-23674(2018).

    [112] Jiang S W, Guo K K, Liao J et al. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow[J]. Biomedical Optics Express, 9, 3306-3319(2018).

    [113] Nguyen T, Xue Y J, Li Y Z et al. Deep learning approach for Fourier ptychography microscopy[J]. Optics Express, 26, 26470-26484(2018).

    [114] Zhang J Z, Xu T F, Shen Z Y et al. Fourier ptychographic microscopy reconstruction with multiscale deep residual network[J]. Optics Express, 27, 8612-8625(2019).

    [115] Cheng Y F, Strachan M, Weiss Z et al. Illumination pattern design with deep learning for single-shot Fourier ptychographic microscopy[J]. Optics Express, 27, 644-656(2019).

    [116] Sun M L, Chen X, Zhu Y Q et al. Neural network model combined with pupil recovery for Fourier ptychographic microscopy[J]. Optics Express, 27, 24161-24174(2019).

    [117] Zhang J L, Tao X, Yang L et al. Forward imaging neural network with correction of positional misalignment for Fourier ptychographic microscopy[J]. Optics Express, 28, 23164-23175(2020).

    [118] Irani M, Peleg S. Improving resolution by image registration[J]. CVGIP: Graphical Models and Image Processing, 53, 231-239(1991).

    [119] Keys R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29, 1153-1160(1981).

    [120] Heinrich L, Bogovic J A, Saalfeld S. Deep learning for isotropic super-resolution from non-isotropic 3D electron microscopy[M]. //Descoteaux M, Maier-Hein L, Franz A, et al. Medical image computing and computer-assisted intervention-MICCAI 2017. Lecture notes in computer science, 10434, 135-143(2017).

    [121] Rivenson Y, Göröcs Z, Günaydin H et al. Deep learning microscopy[J]. Optica, 4, 1437-1443(2017).

    [122] Nehme E, Weiss L E, Michaeli T et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 5, 458-464(2018).

    [123] Byeon H, Go T, Lee S J. Deep learning-based digital in-line holographic microscopy for high resolution with extended field of view[J]. Optics & Laser Technology, 113, 77-86(2019).

    [124] Wang H D, Rivenson Y, Jin Y Y et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 16, 103-110(2019).

    [125] Liu T, de Haan K, Rivenson Y et al. Deep learning-based super-resolution in coherent imaging systems[J]. Scientific Reports, 9, 3926(2019).

    [126] Huang Y Q, Lu Z X, Shao Z M et al. Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network[J]. Optics Express, 27, 12289-12307(2019).

    [127] Luo Z X, Yurt A, Stahl R et al. Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks[J]. Optics Express, 27, 13581-13595(2019).

    [128] Ren Z B, So H K H, Lam E Y. Fringe pattern improvement and super-resolution using deep learning in digital holography[J]. IEEE Transactions on Industrial Informatics, 15, 6179-6186(2019).

    [129] Xiao W, Li J, Pan F et al. Super-resolution indigital holographic phase cell image based on USENet[J]. Acta Photonica Sinica, 49, 0610001(2020).

    [130] Jin L H, Liu B, Zhao F Q et al. Deep learning enables structured illumination microscopy with low light levels and enhanced speed[J]. Nature Communications, 11, 1934(2020).

    [131] Qiao C, Li D, Guo Y T et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy[J]. Nature Methods, 18, 194-202(2021).

    [132] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

    [133] Li X J, Tang W S, Yi W J et al. Review of optical scattering imaging technology with wide field of view and long distance[J]. Chinese Journal of Lasers, 48, 0401012(2021).

    [134] Conkey D B, Caravaca-Aguirre A M, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media[J]. Optics Express, 20, 1733-1740(2012).

    [135] Cui M. A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media[J]. Optics Express, 19, 2989-2995(2011).

    [136] Ma C J, Di J L, Zhang Y et al. Reconstruction of structured laser beams through a multimode fiber based on digital optical phase conjugation[J]. Optics Letters, 43, 3333-3336(2018).

    [137] Ma C J, Di J L, Li Y et al. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation[J]. Applied Physics Express, 11, 062501(2018).

    [138] Freund I, Rosenbluh M, Feng S C. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 61, 2328-2331(1988).

    [139] Spitz E, Werts A. Transmission des images à travers une fibre optique[J]. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 264, 1015(1967).

    [140] Aisawa S, Noguchi K, Matsumoto T. Remote image classification through multimode optical fiber using a neural network[J]. Optics Letters, 16, 645-647(1991).

    [141] Meng L, Hu H F, Hu J Z et al. Image reconstruction of multimode fiber scattering media based on deep learning[J]. Chinese Journal of Lasers, 47, 1206005(2020).

    [142] Ando T, Horisaki R, Tanida J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 23, 33902-33910(2015).

    [143] Satat G, Tancik M, Gupta O et al. Object classification through scattering media with deep learning on time resolved measurement[J]. Optics Express, 25, 17466-17479(2017).

    [144] Wang P, Di J L. Deep learning-based object classification through multimode fiber via a CNN-architecture SpeckleNet[J]. Applied Optics, 57, 8258-8263(2018).

    [145] Kakkava E, Borhani N, Rahmani B et al. Deep learning-based image classification through a multimode fiber in the presence of wavelength drift[J]. Applied Sciences, 10, 3816(2020).

    [146] Li S, Deng M, Lee J et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 5, 803-813(2018).

    [147] Borhani N, Kakkava E, Moser C et al. Learning to see through multimode fibers[J]. Optica, 5, 960-966(2018).

    [148] Rahmani B, Loterie D, Konstantinou G et al. Multimode optical fiber transmission with a deep learning network[J]. Light, Science & Applications, 7, 69(2018).

    [149] Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 5, 1181-1190(2018).

    [150] Lyu M, Wang H, Li G W et al. Learning-based lensless imaging through optically thick scattering media[J]. Advanced Photonics, 1, 036002(2019).

    [151] Kürüm U, Wiecha P R, French R et al. Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array[J]. Optics Express, 27, 20965-20979(2019).

    [152] Li Q Y, Zhao J, Zhang Y Z et al. Imaging reconstruction through strongly scattering media by using convolutional neural networks[J]. Optics Communications, 477, 126341(2020).

    [153] Zhang W H, Zhou S H, Sui X B et al. Single image detecting enhancement through scattering media based on transmission matrix with a deep learning network[J]. Optics Communications, 490, 126896(2021).

    [154] An Y, Huang L J, Li J et al. Deep learning-based real-time mode decomposition for multimode fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-6(2020).

    [155] Lu D X, Fang W H, Li Y Y et al. Optical coherence tomography: principles and recent developments[J]. Chinese Optics, 13, 919-935(2020).

    [156] Kugelman J, Alonso-Caneiro D, Read S A et al. Automatic choroidal segmentation in OCT images using supervised deep learning methods[J]. Scientific Reports, 9, 13298(2019).

    [157] Wang J, Hormel T T, Gao L Q et al. Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning[J]. Biomedical Optics Express, 11, 927-944(2020).

    [158] Fang L Y, Cunefare D, Wang C et al. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search[J]. Biomedical Optics Express, 8, 2732-2744(2017).

    [159] Park I, Kim H K, Chung W K et al. Deep learning based real-time OCT image segmentation and correction for robotic needle insertion systems[J]. IEEE Robotics and Automation Letters, 5, 4517-4524(2020).

    [160] Gao M, Guo Y K, Hormel T T et al. Reconstruction of high-resolution 6×6-mm OCT angiograms using deep learning[J]. Biomedical Optics Express, 11, 3585-3600(2020).

    [161] Katsevich A. An improved exact filtered backprojection algorithm for spiral computed tomography[J]. Advances in Applied Mathematics, 32, 681-697(2004).

    [162] Gordon R, Bender R, Herman G T. Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 29, 471-481(1970).

    [163] Lell M M, Kachelrieß M. Recent and upcoming technological developments in computed tomography:high speed, low dose, deep learning, multienergy[J]. Investigative Radiology, 55, 8-19(2020).

    [164] Choi G, Ryu D, Jo Y et al. Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction tomography[J]. Optics Express, 27, 4927-4943(2019).

    [165] Ryu D H, Jo Y J, Yoo J et al. Deep learning-based optical field screening for robust optical diffraction tomography[J]. Scientific Reports, 9, 15239(2019).

    [166] Yang F S, Pham T A, Gupta H et al. Deep-learning projector for optical diffraction tomography[J]. Optics Express, 28, 3905-3921(2020).

    [167] Di J L, Han W X, Liu S S et al. Sparse-view imaging of a fiber internal structure in holographic diffraction tomography via a convolutional neural network[J]. Applied Optics, 60, A234-A242(2021).

    [168] Tang J, Wang K Q, Zhang W et al. Deep learning based image restoration method of optical synthetic aperture imaging system[J]. Acta Optica Sinica, 40, 2111001(2020).

    [169] Tang J, Wang K Q, Ren Z B et al. RestoreNet: a deep learning framework for image restoration in optical synthetic aperture imaging system[J]. Optics and Lasers in Engineering, 139, 106463(2021).

    [170] Wang K Q, Di J L, Li Y et al. Transport of intensity equation from a single intensity image via deep learning[J]. Optics and Lasers in Engineering, 134, 106233(2020).

    [171] Nguyen T, Bui V, Lam V et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 25, 15043-15057(2017).

    [172] Wu Y F, Wu J C, Jin S Z et al. Dense-U-net: dense encoder-decoder network for holographic imaging of 3D particle fields[J]. Optics Communications, 493, 126970(2021).

    [173] Wu Y F, Wu J C, Hao R et al. Research progress of particle field digital holography based on deep learning[J]. Journal of Applied Optics, 41, 662-674(2020).

    [174] Zeng T J, Lam E Y. Model-based network architecture for image reconstruction in lensless imaging[J]. Proceedings of SPIE, 11551, 115510B(2020).

    [175] Wu J, Cao L, Barbastathis G. DNN-FZA camera: a deep learning approach toward broadband FZA lensless imaging[J]. Optics Letters, 46, 130-133(2021).

    [176] Hou T Y, An Y, Chang Q et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 7, e59(2019).

    [177] Wang F, Bian Y M, Wang H C et al. Phase imaging with an untrained neural network[J]. Light, Science & Applications, 9, 77(2020).

    Jianglei Di, Ju Tang, Ji Wu, Kaiqiang Wang, Zhenbo Ren, Mengmeng Zhang, Jianlin Zhao. Research Progress in the Applications of Convolutional Neural Networks in Optical Information Processing[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1600001
    Download Citation