• Laser & Optoelectronics Progress
  • Vol. 53, Issue 6, 60604 (2016)
Xiao Yi1、2、*, Zheng Zhendong2, Li Kunxiao2, Liang Zhenrong2, Ma Kezhen2, and Chen Yilin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop53.060604 Cite this Article Set citation alerts
    Xiao Yi, Zheng Zhendong, Li Kunxiao, Liang Zhenrong, Ma Kezhen, Chen Yilin. Fiber-Optic Toluene Gas Sensor Based on Graphene[J]. Laser & Optoelectronics Progress, 2016, 53(6): 60604 Copy Citation Text show less
    References

    [1] K S Novoselov, A K Geim, S V Morozov, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [2] M D Stoller, S J Park, Y W Zhu, et al.. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502.

    [3] A A Balandin, S Ghosh, W Z Bao, et al.. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.

    [4] F Schedin, A K Geim, S V Morozov, et al.. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655.

    [5] L A Mashat, K Shin, K K Zadeh, et al.. Graphene/polyaniline nanocomposite for hydrogen sensing[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16168-16173.

    [6] J T Robinson, F K Perkins, E S Snow, et al.. Reduced graphene oxide molecular sensors[J]. Nano Letters, 2008, 8(10): 3137-3140.

    [7] G H Lu, L E Ocola, J H Chen. Reduced graphene oxide for room-temperature gas sensors[J]. Nanotechnology, 2009, 20(44): 445502.

    [8] G H Lu, L E Ocola, J H Chen. Gas detection using low-temperature reduced graphene oxide sheets[J]. Applied Physics Letters,2009, 94(8): 083111.

    [9] J D Fowler, M J Allen, V C Tung, et al.. Practical chemical sensors from chemically derived graphene[J]. ACS Nano, 2009, 3(2): 301-306.

    [10] H Y Jeong, D S Lee, H K Choi, et al.. Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films[J]. Applied Physics Letters, 2010, 96(21): 213105.

    [11] C W Chen, S C Hung, M D Yang, et al.. Oxygen sensors made by monolayer graphene under room temperature[J]. Applied Physics Letters, 2011, 99(24): 243502.

    [12] M Liu, X B Yin, E U Avila, et al.. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

    [13] J Gosciniak, D T H Tan. Theoretical investigation of graphene-based photonic modulators[J]. Scientific Reports, 2013, 3:1897.

    [14] W Du, E P Li, R Hao. Tunability analysis of a graphene-embedded ring modulator[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2008-2011.

    [15] Q L Bao, H Zhang, B Wang, et al.. Broadband graphene polarizer[J]. Nature Photonics, 2011, 5(7): 411-415.

    [16] J T Kim, C G Choi. Graphene-based polymer waveguide polarizer[J]. Optics Express, 2012, 20(4): 3556-3562.

    [17] Y KYap, R M de la Rue, C H Pua, et al.. Graphene-based Q-switched pulsed fiber laser in a linear configuration[J]. Chinese Optics Letters, 2012, 10(4): 041405.

    [18] H Ahmad, F D Muhammad, M Z Zulkifli, et al.. Q-switched pulse generation from an all-fiber distributed Bragg reflector laser using graphene as saturable absorber[J]. Chinese Optics Letters, 2013, 11(7): 071401.

    [19] R Z R R Rosdin, F Ahmad, N M Ali, et al.. Q-switched Er-doped fiber laser with low pumping threshold using graphene saturable absorber[J]. Chinese Opitcs Letters, 2014, 12(9): 091404.

    [20] L Q Zhang, Z Zhuo, R S Wei, et al.. Wavelength tunable passively Q-switched Yb-doped double-clad fiber laser with graphene grown on SiC[J]. Chinese Optics Letters, 2014, 12(2): 021405.

    [21] Liao Guozhen, Zhang Jun, Cai Xiang, et al.. All-fiber temperature sensor based on graphene[J]. Acta Optica Sinica, 2013, 33(7): 0706004.

    [22] Xiao Yi, Zhang Jun, Cai Xiang, et al.. Fiber-optic humidity sensing based on graphene[J]. Acta Optica Sinica, 2015, 35(4): 0406005.

    [23] J A Kim, T Hwang, S R Dugasani, et al.. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications[J]. Sensors and Actuators B: Chemica, 2013, 187: 426-433.

    [24] S K Mishra, S N Tripathi, V Choudhary, et al.. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization[J]. Sensors and Actuators B: Chemica, 2014, 199: 190-200.

    [25] Y Wu, B CYao, Y Cheng, et al.. Hybrid graphene-microfiber waveguide for chemical gas sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4400206.

    [26] B CYao, Y Wu, A Q Zhang, et al.. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing[J]. Optics Express, 2014, 22(23): 28154-28162.

    [27] B C Yao, Y Wu, Y Cheng, et al.. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide[J]. Sensors and Actuators B: Chemical, 2014, 194: 142-148.

    [28] L Sansone, V Malachovska, P L Manna, et al.. Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics[J]. Sensors and Actuators B: Chemical, 2014, 202: 523-526.

    [29] H W Qiu, S C Xu, S Z Jiang, et al.. A novel graphene-based tapered optical fiber sensor for glucose detection[J]. Applied Surface Science, 2015, 329: 390-395.

    [30] Y Xiao, J Zhang, X Cai, et al.. Reduced graphene oxide for fiber-optic humidity sensing[J]. Optics Express, 2014, 22(25): 31555-31567.

    [31] H Shan, C B Liu, L Liu, et al.. Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6376-6380.

    [32] M Mori, Y Itagaki, J Iseda, et al.. Influence of VOC structures on sensing property of SmFeO3 semiconductive gas sensor[J]. Sensors and Actuators B: Chemical, 2014, 202: 873-877.

    [33] S Liu, Z Y Wang, H R Zhao, et al.. Ordered mesoporous Co3O4 for high-performance toluene sensing[J]. Sensors and Actuators B: Chemical, 2014, 197: 342-349.

    [34] J L Tian, J Wang, Y W Hao, et al.. Toluene sensing properties of porous Pd-loaded flower-like SnO2 micropheres[J]. Sensors and Actuators B: Chemical, 2014, 202: 795-802.

    [35] T T Tung, M Castro, I Pillin, et al.. Graphene-Fe3O4 /PIL-PEDOT for the design of sensitive and stable quantum chemo-resistive VOC sensors[J]. Carbon, 2014, 74: 104-112.

    [36] M Parmar, C Balamurugan, D W Lee. PANI and graphene/PANI nanocomposite films-comparative toluene gas sensing behavior[J]. Sensors, 2013, 13(12): 16611-16624.

    [37] M Matsuguchi, K Asahara, T Mizukami. Highly sensitive toluene vapor sensors using carbon black/amino-functional copolymer composites[J]. Journal of Applied Polymer Science, 2013, 127(4): 2529-2535.

    [38] I Hafaiedh, W Elleuch, P Clement, et al.. Multi-walled carbon nanotubes for volatile organic compound detection[J]. Sensors and Actuators B: Chemical, 2013, 182: 344-350.

    [39] A Ndiaye, P Bonnet, A Pauly, et al.. Noncovalent functionalization of single-wall carbon nanotubes for the elaboration of gas sensor dedicated to BTX type gases: The case of toluene[J]. The Journal of Physical Chemistry C, 2013, 117: 20217-20228.

    [40] Y Zhou, Y D Jiang, G Z Xie, et al.. Gas sensors based on multiple-walled carbon nanotubes-polyethylene oxide films for toluene vapor detection[J]. Sensors and Actuators B: Chemical, 2014, 191: 24-30.

    [41] L I B Silva, T A P Rocha-Santos, A CDuarte. Development of a fluorosiloxane polymer-coated optical fibre sensor for detection of organic volatile compounds[J]. Sensors and Actuators B: Chemical, 2008, 132(1): 280-289.

    [42] J Zhang, X L Tang, J H Dong, et al.. Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors[J]. Sensors and Actuators B: Chemical, 2009, 135(2): 420-425.

    [43] S M Topliss, S W James, F Davis, et al.. Optical fibre long period grating based selective vapour sensing of volatile organic compounds[J]. Sensors and Actuators B: Chemical, 2010, 143(2): 629-634.

    [44] J C Echererria, P deVicente, J Estella, et al.. A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film[J]. Talanta, 2012, 99: 433-440.

    [45] T Bora, H Fallah, M Chaudhari, et al.. Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing[J]. Sensors and Actuators B: Chemical, 2014, 202: 543-550.

    [46] X Cai, S Z Tan, A G Xie, et al.. Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water[J]. Materials Research Bulletin, 2011, 46(12): 2353-2358.

    [47] Z Chen, C H Bai. Effect of overlaid material on optical transmission of side-polished fiber made by wheel side polishing[J]. Journal of Electronic Science and Technology of China, 2008, 6(4): 445-448.

    [48] A C Ferrari, J C Meyer, V Scardaci, et al.. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.

    [49] G W Hanson. Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

    [50] R R Nair, P Blake, A N Grigorenko, et al.. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.

    [51] O Leenaerts, B Partoens, F M Peeters. Adsorption of H2O, NH3, CO, NO2 and NO on graphene: A first-principles study[J]. Physical Review B, 2008, 77(12): 125416.

    Xiao Yi, Zheng Zhendong, Li Kunxiao, Liang Zhenrong, Ma Kezhen, Chen Yilin. Fiber-Optic Toluene Gas Sensor Based on Graphene[J]. Laser & Optoelectronics Progress, 2016, 53(6): 60604
    Download Citation