• Acta Optica Sinica
  • Vol. 36, Issue 10, 1024001 (2016)
Li Mengjun1、* and Li Xiaoming2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.1024001 Cite this Article Set citation alerts
    Li Mengjun, Li Xiaoming. Group Theory of Fano Resonance Spectra in System of C3v and C4v Metallic Multi-Nanoparticles-Thin Film[J]. Acta Optica Sinica, 2016, 36(10): 1024001 Copy Citation Text show less
    References

    [1] Halas N J. Plasmonics: an emerging field fostered by nano letters[J]. Nano Lett, 2010, 10(10): 3816-3822.

    [2] Prodan E, Nordlander P. Plasmon hybridization in spherical nanoparticles[J]. J Chem Phys, 2004, 120(11): 5444-5454.

    [3] Nordlander P, Oubre C, Prodan E, et al. Plasmon hybridization in nanoparticle dimers[J]. Nano Lett, 2004, 4(5): 899-903.

    [4] Nordlander P, Prodan E. Plasmon hybridization in nanoparticles near metallic surfaces[J]. Nano Lett, 2004, 4(11): 2209-2213.

    [5] Papanikolaou N. Optical properties of metallic nanoparticle arrays on a thin metallic film[J]. Phys Rev B, 2007, 75(23): 235426.

    [6] Chen J, Ng J, Ding K, et al. Negative optical torque[J]. Sci Rep, 2014, 4: 6386.

    [7] Kale M J, Christopher P. Plasmons at the interface[J]. Science, 2015, 349(6284): 587-588.

    [8] Tame M S, Mcenery K R, Ozdemir S K, et al. Quantum plasmonics[J]. Nature Phys, 2013, 9: 329-340.

    [9] Yu Jie, Zhang Junxi, Zhang Lide, et al. Surface plasmonic micropolarizers based on Ag nanorod arrays[J]. Acta Optica Sinica, 2014, 34(7): 0723001.

    [10] Li X M, Fang H, Weng X Y, et al. Electronic spill-out induced spectral broadening in quantum hybrodynamic nanoplasmonics[J]. Opt Express, 2015, 23(23): 29738-29745.

    [11] Brandl D W, Mirin N A, Nordlander P. Plasmon modes of nanosphere trimmers and quadrumers[J]. J Phys Chem B, 2006, 110(25): 12302-12310.

    [12] Chuntonov L, Haran G. Trimeric plasmonic molecules: the role of symmetry[J]. Nano Lett, 2011, 11(6): 2440-2445.

    [13] Hopkins B, Liu W, Miroshnichenko A E, et al. Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters[J]. Nanoscale, 2013, 5(14): 6395-6403.

    [14] Huang Yunhuan, Xue Baoping. Research of multiple Fano resonances in plasmonic octamer clusters[J]. Laser & Optoelectronics Progress, 2015, 52(6): 062401.

    [15] Lei D Y, Fernandez-Dominguez A I, Sonnefraud Y, et al. Revealing plasmonic gap modes in particle-on-film systems using dark-field-spectroscopy[J]. ACS Nano, 2012, 6(2): 1380-1386.

    [16] Fan J A, Bao K, Lassiter J B, et al. Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy[J]. Nano Lett, 2012, 12(6): 2817-2821.

    [17] Shafiei F, Monticone F, Le K Q, et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance[J]. Nature Nanotech, 2013, 8: 95-99.

    [18] Wang Yue, Wang Xuan, Li Longwei. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.

    [19] Kneipp K, Kneipp H, Itzkan I, et al. Cheminform abstract: Ultrasensitive chemical analysis by Raman spectroscopy[J]. Chem Rev, 1999, 99(10): 2957-2976.

    [20] Zhang W H, Fischer H, Schmid T, et al. Mode-selective surface-enhanced Raman spectroscopy using nanpfabricated plasmonic dipole antennas[J]. J Phys Chem C, 2009, 113(33): 14672-14675.

    [21] Nishijima Y, Rosa L, Juodkazis S. Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting[J]. Opt Express, 2012, 20(10):11466-11477.

    [22] Anker J N, Hall W P, Lyandres O,et al. Biosensing with plasmonic nanosensors[J]. Nature Materi, 2008, 7(6): 442-453.

    [23] Halas N J, Lal S, Chang W S, et al. Plasmons in strongly coupled metallic nanostructures[J]. Chem Rev, 2011, 111(6): 3913-3961.

    [24] Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. PNAS, 2003, 100(23): 13549-13554.

    [25] Yan B, Boriskina S V, Reinhard B M. Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing[J]. J Phy Chem C Nanometer Interfaces, 2011, 115(50): 24437-24453.

    [26] Thomas M, Pierre-Michel A, Gaetan L. Coupling between plasmonic films and nanostructures: from basics to applications[J]. Nanophoto, 2015, 4(3): 361-382.

    [27] Aravind P K, Metiu H. The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure: applications to surface enhanced spectroscopy[J]. Surface Science, 1983, 124(2-3): 506-528.

    [28] Holland W R, Hall D G. Frequency shifts of an electric-dipole resonance near a conducting surface[J]. Phys Rev Lett, 1984, 52(19): 1041-1044.

    [29] Stuart H R, Hall D G. Enhanced dipole-dipole interaction between elementary radiators near a surface[J]. Phys Rev Lett, 1998, 80(25): 5663-5666.

    [30] de Garcia Abajo F J. Colloquium: light scattering by particle and hole arrays[J]. Rev Mod Phys, 2007, 79(4): 1267-1290.

    [31] Vernon K C, Funston A M, Novo C, et al. Influence of particle-substrate interaction on localized plasmon resonances[J]. Nano Lett, 2010, 10(6): 2080-2086.

    [32] Campione S, Guclu C, Ragan R, et al. Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles[J]. ACS Photonics, 2014, 1(3): 254-260.

    [33] Gilbertson A M, Francescato Y, Roschuk T, et al. Plasmon-induced optical anisotropy in hybrid grapheme-metal nanoparticle systems[J]. Nano Lett, 2015, 15(5): 3458-3464.

    [34] Nicolas R, Leveque G, Marae-Djouda J, et al. Plasmonic mode interferences and Fano resonances in metal-insulator-metal nanostructured interface[J]. Sci Rep, 2015, 5: 14419.

    [35] Lukyanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materi, 2010, 9: 707-715.

    [36] Li Mengjun, Fang Hui, Li Xiaoming, et al. Subgroup decomposition analyses of D3h and D4h plsamonic metamolecule Fano resonance spectrum[J]. Acta Physica Sinica, 2016, 65(5): 057302.

    [37] Rahmani M, Lei D Y, Giannini V, et al. Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape[J]. Nano Lett, 2012, 12(4): 2101-2106.

    [38] Frimmer M, Coenen T, Koenderink A F. Signature of a Fano resonance in a plasmonic metamolecule′s local density of optical states[J]. Phys Rev Lett, 2012, 108(7): 077404.

    [39] Hopkins B, Poddubny A N, Miroshnichenko A E, et al. Revisiting the physics of Fano resonances for nanoparticle oligomers[J]. Phys Rev A, 2013, 88(5): 053819.

    [40] Gomez D E, Vernon K C, Davis T J. Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures[J]. Phys Rev B, 2010, 81(7): 075414.

    [41] Rahmani M, Lukiyanchuk B, Tahmasebi T, et al. Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers[J]. Appl Phys A, 2012, 107(1): 23-30.

    CLP Journals

    [1] Jian Cui, Boyu Ji, Jingquan Lin. Plasmonic Fano Resonance in Metallic Disk-Like Nanostructure System[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060002

    Li Mengjun, Li Xiaoming. Group Theory of Fano Resonance Spectra in System of C3v and C4v Metallic Multi-Nanoparticles-Thin Film[J]. Acta Optica Sinica, 2016, 36(10): 1024001
    Download Citation