• Acta Optica Sinica
  • Vol. 39, Issue 6, 0619001 (2019)
Yuhang Pan, Yuangang Lu*, Jianqin Peng, Haixia Ma, and Jiming Wang
Author Affiliations
  • Department of Applied Physics, College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 211106, China
  • show less
    DOI: 10.3788/AOS201939.0619001 Cite this Article Set citation alerts
    Yuhang Pan, Yuangang Lu, Jianqin Peng, Haixia Ma, Jiming Wang. Brillouin Gain Spectrum Characteristics of Photonic Crystal Fibers[J]. Acta Optica Sinica, 2019, 39(6): 0619001 Copy Citation Text show less
    References

    [1] Woyessa G, Fasano A, Markos C et al. Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing[J]. Optical Materials Express, 7, 286-295(2017). http://www.onacademic.com/detail/journal_1000040463915810_52b3.html

         Woyessa G, Fasano A, Markos C et al. Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing[J]. Optical Materials Express, 7, 286-295(2017). http://www.onacademic.com/detail/journal_1000040463915810_52b3.html

    [2] Jiang Y X, Fang Z J, Du Y Q et al. Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids[J]. Optics Express, 26, 356-366(2018). http://www.ncbi.nlm.nih.gov/pubmed/29328312

         Jiang Y X, Fang Z J, Du Y Q et al. Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids[J]. Optics Express, 26, 356-366(2018). http://www.ncbi.nlm.nih.gov/pubmed/29328312

    [3] Mao C, Huang B, Wang Y et al. High-sensitivity gas pressure sensor based on hollow-core photonic bandgap fiber Mach-Zehnder interferometer[J]. Optics Express, 26, 30108-30115(2018). http://www.ncbi.nlm.nih.gov/pubmed/30469890

         Mao C, Huang B, Wang Y et al. High-sensitivity gas pressure sensor based on hollow-core photonic bandgap fiber Mach-Zehnder interferometer[J]. Optics Express, 26, 30108-30115(2018). http://www.ncbi.nlm.nih.gov/pubmed/30469890

    [4] Zhou D W, Wang B Z, Ba D X et al. Fast distributed Brillouin optical fiber sensing for dynamic strain measurement[J]. Acta Optica Sinica, 38, 0328005(2018).

         Zhou D W, Wang B Z, Ba D X et al. Fast distributed Brillouin optical fiber sensing for dynamic strain measurement[J]. Acta Optica Sinica, 38, 0328005(2018).

    [5] Zhang Z L, Gao L, Sun Y Y et al. Strain transfer law of distributed optical fiber sensor[J]. Chinese Journal of Lasers, 46, 0410001(2019).

         Zhang Z L, Gao L, Sun Y Y et al. Strain transfer law of distributed optical fiber sensor[J]. Chinese Journal of Lasers, 46, 0410001(2019).

    [6] Agrawal G[M]. Nonlinear fiber optics(2012).

         Agrawal G[M]. Nonlinear fiber optics(2012).

    [7] Zhou D W, Dong Y K, Wang B Z et al. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement[J]. Light: Science & Applications, 7, 32(2018). http://www.ncbi.nlm.nih.gov/pubmed/30839630

         Zhou D W, Dong Y K, Wang B Z et al. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement[J]. Light: Science & Applications, 7, 32(2018). http://www.ncbi.nlm.nih.gov/pubmed/30839630

    [8] Zhang L X, Li Y Q, An Q et al. Temperature sensing technology based on Rayleigh Brillouin optical time domain analysis with pulse coding[J]. Acta Optica Sinica, 37, 1106004(2017).

         Zhang L X, Li Y Q, An Q et al. Temperature sensing technology based on Rayleigh Brillouin optical time domain analysis with pulse coding[J]. Acta Optica Sinica, 37, 1106004(2017).

    [9] Song M P, Bao C, Qiu C et al. A distributed optical-fiber sensor combined Brillouin optical time-domain analyzer with Brillouin optical time-domain reflectometer[J]. Acta Optica Sinica, 30, 650-654(2010).

         Song M P, Bao C, Qiu C et al. A distributed optical-fiber sensor combined Brillouin optical time-domain analyzer with Brillouin optical time-domain reflectometer[J]. Acta Optica Sinica, 30, 650-654(2010).

    [10] Xu P B, Ba D X, He W M et al. Distributed Brillouin optical fiber temperature and strain sensing at a high temperature up to 1000 ℃ by using an annealed gold-coated fiber[J]. Optics Express, 26, 29724-29734(2018).

         Xu P B, Ba D X, He W M et al. Distributed Brillouin optical fiber temperature and strain sensing at a high temperature up to 1000 ℃ by using an annealed gold-coated fiber[J]. Optics Express, 26, 29724-29734(2018).

    [11] Teng L, Zhang H Y, Dong Y K et al. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings[J]. Optics Letters, 41, 4413-4416(2016).

         Teng L, Zhang H Y, Dong Y K et al. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings[J]. Optics Letters, 41, 4413-4416(2016).

    [12] Xu P B, Dong Y K, Zhou D W et al. 1200 ℃ high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis[J]. Applied Optics, 55, 5471-5478(2016).

         Xu P B, Dong Y K, Zhou D W et al. 1200 ℃ high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis[J]. Applied Optics, 55, 5471-5478(2016).

    [13] Chen X, Xia L, Li W et al. Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber[J]. Chinese Optics Letters, 15, 042901(2017).

         Chen X, Xia L, Li W et al. Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber[J]. Chinese Optics Letters, 15, 042901(2017).

    [14] Tchahame J C, Beugnot J C, Kudlinski A et al. Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber[J]. Optics Letters, 40, 4281-4284(2015).

         Tchahame J C, Beugnot J C, Kudlinski A et al. Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber[J]. Optics Letters, 40, 4281-4284(2015).

    [15] Jain V, Sharma S, Saini T S et al. Design and analysis of single-mode tellurite photonic crystal fibers for stimulated Brillouin scattering based slow-light generation[J]. Applied Optics, 55, 6791-6796(2016).

         Jain V, Sharma S, Saini T S et al. Design and analysis of single-mode tellurite photonic crystal fibers for stimulated Brillouin scattering based slow-light generation[J]. Applied Optics, 55, 6791-6796(2016).

    [16] Lu Y G, Qin Z G, Lu P et al. Distributed strain and temperature measurement by Brillouin beat spectrum[J]. IEEE Photonics Technology Letters, 25, 1050-1053(2013).

         Lu Y G, Qin Z G, Lu P et al. Distributed strain and temperature measurement by Brillouin beat spectrum[J]. IEEE Photonics Technology Letters, 25, 1050-1053(2013).

    [17] Cregan R F. Single-mode photonic band gap guidance of light in air[J]. Science, 285, 1537-1539(1999).

         Cregan R F. Single-mode photonic band gap guidance of light in air[J]. Science, 285, 1537-1539(1999).

    [18] Koyamada Y, Sato S, Nakamura S et al. Simulating and designing Brillouin gain spectrum in single-mode fibers[J]. Journal of Lightwave Technology, 22, 631-639(2004).

         Koyamada Y, Sato S, Nakamura S et al. Simulating and designing Brillouin gain spectrum in single-mode fibers[J]. Journal of Lightwave Technology, 22, 631-639(2004).

    [19] Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2, 1-59(2010).

         Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2, 1-59(2010).

    [20] Dasgupta S, Poletti F, Liu S et al. Modeling Brillouin gain spectrum of solid and microstructured optical fibers using a finite element method[J]. Journal of Lightwave Technology, 29, 22-30(2011).

         Dasgupta S, Poletti F, Liu S et al. Modeling Brillouin gain spectrum of solid and microstructured optical fibers using a finite element method[J]. Journal of Lightwave Technology, 29, 22-30(2011).

    [21] Nielsen M, Mortensen N. Photonic crystal fiber design based on the V-parameter[J]. Optics Express, 11, 2762-2768(2003).

         Nielsen M, Mortensen N. Photonic crystal fiber design based on the V-parameter[J]. Optics Express, 11, 2762-2768(2003).

    [22] Folkenberg J R, Mortensen N A, Hansen K P et al. Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers[J]. Optics Letters, 28, 1882-1884(2003).

         Folkenberg J R, Mortensen N A, Hansen K P et al. Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers[J]. Optics Letters, 28, 1882-1884(2003).

    [23] McElhenny J E, Pattnaik R K, Toulouse J et al. . Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers[J]. Journal of the Optical Society of America B, 25, 582-593(2008).

         McElhenny J E, Pattnaik R K, Toulouse J et al. . Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers[J]. Journal of the Optical Society of America B, 25, 582-593(2008).

    Yuhang Pan, Yuangang Lu, Jianqin Peng, Haixia Ma, Jiming Wang. Brillouin Gain Spectrum Characteristics of Photonic Crystal Fibers[J]. Acta Optica Sinica, 2019, 39(6): 0619001
    Download Citation