• Journal of Infrared and Millimeter Waves
  • Vol. 42, Issue 6, 730 (2023)
Zi-Li YANG1, Man WANG2, Deng-Guang YU1、*, Liang-Qing ZHU3, Jun SHAO2, and Xi-Ren CHEN2、**
Author Affiliations
  • 1School of Materials and Chemistry,University of Shanghai for Science and Technology,Shanghai 200093,China
  • 2State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 3School of Physics and Electronic Science,East China Normal University,Shanghai 200241,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2023.06.004 Cite this Article
    Zi-Li YANG, Man WANG, Deng-Guang YU, Liang-Qing ZHU, Jun SHAO, Xi-Ren CHEN. Bi composition-dependent study of infrared photoluminescence efficiency in InPBi bandgap[J]. Journal of Infrared and Millimeter Waves, 2023, 42(6): 730 Copy Citation Text show less
    References

    [1] K Alberi, J Wu, W Walukiewicz et al. Valence band anticrossing in mismatched III-V semiconductor alloys. Phys. Rev. B, 75, 045203-045208(2007).

    [2] S Francoeur, M J Seong, A Mascarenhas et al. Band gap of GaAs1-xBix, 0. Applied Physics Letters, 82, 3874-3876(2003).

    [3] M K Rajpalke, W M Linhart, K M Yu et al. Bi flux-dependent MBE growth of GaSbBi alloys. Journal of Crystal Growth, 425, 241-244(2015).

    [4] K Y Ma, Z M Fang, D H Jaw et al. Organometallic vapor phase epitaxial growth and characterization of InAsBi and InAsSbBi. Applied Physics Letters, 55, 2420-2422(1989).

    [5] J Kopaczek, R Kudrawiec, M P Polak et al. Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x ≤ 0.034. Appl. Phys. Lett., 105, 222104(2014).

    [6] X Wu, X Chen, W Pan et al. Anomalous photoluminescence in InP1-xBix. Scientific Reports, 6, 27867(2016).

    [7] K Wang, Y Gu, Zhou H F. et al. InPBi Single Crystals Grown by Molecular Beam Epitaxy. Sci. Rep, 5449(2014).

    [8] M K Bhowal, S Das, A S Sharma et al. Anomalous increase of sub-band gap photoluminescence from InPBi layers grown by liquid phase epitaxy. Materials Research Express, 085902(2019).

    [9] F Gandouzi. Hedhili F, Rekik N. A density functional theory investigation of the structural and optoelectronic properties of InP1-xBix alloys. Computational Materials Science, 149, 307-315(2018).

    [10] L. Y. Wu, P. F. Lu, C. H. Yang et al. The effect of BiIn hetero-antisite defects in In1–xPBix alloy. Journal of Alloys & Compounds, 674, 21-25(2016).

    [11] J Shao, W Lu, X Lu et al. Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer. Review of Scientific Instruments, 77, 063104(2006).

    [12] B Yan, X Chen, L Zhu et al. Bismuth-induced band-tail states in GaAsBi probed by photoluminescence. Applied Physics Letters, 114, 052104(2019).

    [13] C Dou, X Chen, Q Chen et al. Photoluminescence Evolution with Deposition Thickness of Ge Nanostructures Embedded in GaSb. Physica status solidi, B. Basic solid state physics, 259(2022).

    [14] X Chen, L Zhu, Y Zhang et al. Modulated Photoluminescence Mapping of Long-Wavelength Infrared InAs/GaSb Type-II Superlattice: In-Plane Optoelectronic Uniformity. Physical Review Applied, 15, 044007(2021).

    [15] X R Chen, X Y Wu, L Yue et al. Negative Thermal Quenching of Below-bandgap Photoluminescence in InPBi. Appl. Phys. Lett, 110, 051903(2017).

    [16] W Pan, P Wang, X Wu et al. Growth and material properties of InPBi thin films using gas source molecular beam epitaxy. Journal of Alloys and Compounds, 656, 777-783(2016).

    [17] J Shao, X Lu, F Yue et al. Magnetophotoluminescence study of GaxIn1-xP quantum wells with CuPt-type long-range ordering. Journal of Applied Physics, 100, 1399(2006).

    [18] J Shao, C Lu, L Wei et al. Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs. Applied Physics Letters, 96, 091101(2010).

    [19] J Shao, W Lu, G Tsen et al. Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice. Journal of Applied Physics, 112, 663(2012).

    [20] J Shao, Z Qi, H Zhao et al. Photoluminescence probing of interface evolution with annealing in InGa(N)As/GaAs single quantum wells. Journal of Applied Physics, 23, 165327(2015).

    [21] Dreszer , Chen , Seendripu et al. Weber, Phosphorus antisite defects in low-temperature InP. Physical Review. B, Condensed matter, 47, 4111-4114(1993).

    [22] Łukasz Gelczuk, H Stokowski, J Kopaczek et al. Bi-induced acceptor level responsible for partial compensation of native free electron density in InP1-xBix dilute bismide alloys. Journal of Physics D Applied Physics, 49, 115107(2016).

    [23] X Lu, D A Beaton, R B Lewis et al. Composition dependence of photoluminescence of GaAs1-xBix alloys. Applied Physics Letters, 95, 2245(2009).

    [24] X R Chen, H Alradhi, Z M Jin et al. Mid-infrared Photoluminescence Revealing Internal Quantum Efficiency Enhancement of Type-I and Type-II InAs Core/shell Nanowires. Optics Letters, 47, 5208-5211(2022).

    [25] S F Chichibu, A Uedono, T Onuma. Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors. Nature Materials, 5, 810-6(2006).

    [26] M R Pillai, S S Kim, S T Ho et al. Growth of InxGa1-xAs/GaAs Heterostructures Using Bi as a Surfactant. Journal of Vacuum Science & Technology B, 18, 1232-1236(2000).

    Zi-Li YANG, Man WANG, Deng-Guang YU, Liang-Qing ZHU, Jun SHAO, Xi-Ren CHEN. Bi composition-dependent study of infrared photoluminescence efficiency in InPBi bandgap[J]. Journal of Infrared and Millimeter Waves, 2023, 42(6): 730
    Download Citation