• Acta Optica Sinica
  • Vol. 41, Issue 5, 0516002 (2021)
Dawei Sun, Changhong Li*, Lingjun Yi, and Zaipeng Wang
Author Affiliations
  • The College of Electronic Information, Qingdao University, Qingdao, Shandong 266071, China
  • show less
    DOI: 10.3788/AOS202141.0516002 Cite this Article Set citation alerts
    Dawei Sun, Changhong Li, Lingjun Yi, Zaipeng Wang. High Absorption Broadband Solar Energy Absorber Based on Two-Dimensional Photonic Crystal[J]. Acta Optica Sinica, 2021, 41(5): 0516002 Copy Citation Text show less
    References

    [1] Liu Z Q, Liu G Q, Huang Z P et al. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface[J]. Solar Energy Materials and Solar Cells, 179, 346-352(2018).

    [2] Fang H M, Tian M, Chang S Q et al. Optical absorption properties in one-dimensional graphene-based photonic crystals[J]. Chinese Journal of Quantum Electronics, 35, 589-593(2018).

    [3] Wu Y, Hu E T, Wang J et al. Design and optimization of multilayered metal/dielectric film structure for solar photothermal conversion[J]. Acta Optica Sinica, 40, 1431001(2020).

    [4] Luo J, Lai Y. Near-perfect absorption by photonic crystals with a broadband and omnidirectional impedance-matching property[J]. Optics Express, 27, 15800(2019). http://www.ncbi.nlm.nih.gov/pubmed/31163771

    [5] Ansari N, Mohebbi E. Broadband and high absorption in Fibonacci photonic crystal including MoS2 monolayer in the visible range[J]. Journal of Physics D: Applied Physics, 51, 115101(2018).

    [6] Chen P Z, Yu L Y, Niu P J et al. Numerical study on conical two-dimensional photonic crystal in silicon thin-film solar cells[J]. Acta Physica Sinica, 67, 028802(2018).

    [7] Niu X Y, Qi D, Wang X et al. Improved broadband spectral selectivity of absorbers/emitters for solar thermophotovoltaics based on 2D photonic crystal heterostructures[J]. Journal of the Optical Society of America A, 35, 1832-1838(2018). http://www.ncbi.nlm.nih.gov/pubmed/30461841

    [8] Li X, Zhao Y H, Peng H et al. Solar cells with surface modified Cs-doped ZnO nanorod array as electron transporting layer[J]. Acta Optica Sinica, 38, 0731001(2018).

    [9] Zhu L, Wang Y, Xiong G et al. Design and absorption characteristics of broadband nano-metamaterial solar absorber[J]. Acta Optica Sinica, 37, 0923001(2017).

    [10] Gomard G, Drouard E, Letartre X et al. Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells[J]. Journal of Applied Physics, 108, 123102(2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5672470

    [11] Wan C L, Ho Y, Nunez-Sanchez S et al. A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications[J]. Nano Energy, 26, 392-397(2016). http://www.sciencedirect.com/science/article/pii/S2211285516301355

    [12] Liu K X, Lin J H, Shi J H et al. Design and optimization of GaAs nanowire array solar cells[J]. Acta Photonica Sinica, 45, 0425002(2016).

    [13] Yeng Y X, Chou J B, Rinnerbauer V et al. Omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals[J]. Proceedings of SPIE, 9170, 91700X(2014). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1901649

    [14] Rinnerbauer V, Lenert A, Bierman D M et al. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics[J]. Advanced Energy Materials, 4, 1400334(2014). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020413130239.html

    [15] ASTM International. Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37°tilted surface[S]. West Conshohocken, PA:[s.n.](2020).

    [16] Tian Y P, Qian L J, Liu X J et al. -05-20)[2020-06-16][EB/OL]. abrasion resistant selective solar absorber under ambient environment., org/abs/2005, 14305(2020). https://arxiv.

    [17] Li Z, Wenas Y C, Fu L et al. Influence of electrical design on core-shell GaAs nanowire array solar cells[J]. IEEE Journal of Photovoltaics, 5, 854-864(2015). http://smartsearch.nstl.gov.cn/paper_detail.html?id=9b1bda50f7d74c9fc27e2cdca592bc4e

    [18] Raki A D, Majewski M L. Modeling the optical dielectric function of GaAs and AlAs: extension of Adachi's model[J]. Journal of Applied Physics, 80, 5909-5914(1996). http://scitation.aip.org/content/aip/journal/jap/80/10/10.1063/1.363586

    [19] Raki A D, Djuriši A B, Elazar J M et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 37, 5271-5283(1998). http://www.opticsinfobase.org/ao/abstract.cfm?id=61190

    [20] Jiang C Y, Wang X M, Liu H N et al. Using ultra-thin GaAs photonic crystal absorbing layer to improve solar cell absorption efficiency[J]. Journal of Synthetic Crystals, 47, 2446-2451, 2456(2018).

    [21] Chou J B, Yeng Y X, Lenert A et al. Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications[J]. Optics Express, 22, A144-A154(2014).

    [22] Sai H, Kanamori Y, Yugami H. High-temperature resistive surface grating for spectral control of thermal radiation[J]. Applied Physics Letters, 82, 1685-1687(2003). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4868618

    [23] Ghebrebrhan M, Bermel P, Yeng Y X et al. Tailoring thermal emission via Q matching of photonic crystal resonances[J]. Physical Review A, 83, 033810(2011). http://adsabs.harvard.edu/abs/2011PhRvA..83c3810G

    [24] Li H. Research on physical mechanism of selective solar absorbers[D]. Beijing: Beijing University of Posts and Telecommunications(2019).

    Dawei Sun, Changhong Li, Lingjun Yi, Zaipeng Wang. High Absorption Broadband Solar Energy Absorber Based on Two-Dimensional Photonic Crystal[J]. Acta Optica Sinica, 2021, 41(5): 0516002
    Download Citation