• Acta Optica Sinica (Online)
  • Vol. 2, Issue 2, 0209001 (2025)
Zhiyong Tan1, Jielei Ni1, Qianyi Wei1, Jiahui Pan1..., Yuquan Zhang1, Ke Zhang1, Xiaocong Yuan1,2 and Changjun Min1,*|Show fewer author(s)
Author Affiliations
  • 1Nanophotonics Research Centre, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, Guangdong , China
  • 2Research Center for Frontier Fundamental Studies, Zhejiang Lab , Hangzhou 311100, Zhejiang , China
  • show less
    DOI: 10.3788/AOSOL240459 Cite this Article Set citation alerts
    Zhiyong Tan, Jielei Ni, Qianyi Wei, Jiahui Pan, Yuquan Zhang, Ke Zhang, Xiaocong Yuan, Changjun Min. Research Progress on In-Situ Characterization Technology of Laser Micro-Nano Fabrication (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(2): 0209001 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Hou Z W, Liu S F, Lin L H et al. Research progress on femtosecond laser 3D printing technology of inorganic materials (invited)[J]. Chinese Journal of Lasers, 51, 1202404(2024).

    [3] Zhou R, Li F P, Hong M H. Laser interaction with materials and its applications in precision engineering[J]. Scientia Sinica Physica, 47, 024201(2017).

    [4] Liu S F, Lin L H, Sun H B. Opto-thermophoretic manipulation[J]. ACS Nano, 15, 5925-5943(2021).

    [5] Sun X Y, Chen Z, Wang Y Y et al. Femtosecond laser direct-writing optical waveguide amplifiers and lasers (invited)[J]. Laser & Optoelectronics Progress, 61, 0314003(2024).

    [6] Liu H G, Xie L R, Lin W X et al. Optical quality laser polishing of CVD diamond by UV pulsed laser irradiation[J]. Advanced Optical Materials, 9, 2100537(2021).

    [7] Liu H G, Lin W X, Hong M H. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications[J]. Light: Science & Applications, 10, 162(2021).

    [8] He F, Cheng Y. Femtosecond laser micromachining: frontier in laser precision micromachining[J]. Chinese Journal of Lasers, 34, 595-622(2007).

    [9] Barner-Kowollik C, Bastmeyer M, Blasco E et al. 3D laser micro- and nanoprinting: challenges for chemistry[J]. Angewandte Chemie International Edition, 56, 15828-15845(2017).

    [10] Cabanettes F, Joubert A, Chardon G et al. Topography of as built surfaces generated in metal additive manufacturing: a multi scale analysis from form to roughness[J]. Precision Engineering, 52, 249-265(2018).

    [11] Cui Y, Zhang G, Zhao Y A et al. Characterization analysis of micro-defects in thin-film components for laser systems[J]. Chinese Journal of Lasers, 50, 0203101(2023).

    [12] Chong T C, Hong M H, Shi L P. Laser precision engineering: from microfabrication to nanoprocessing[J]. Laser & Photonics Reviews, 4, 123-143(2010).

    [13] Lesyk D A, Martinez S, Mordyuk B N et al. Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress[J]. Surface and Coatings Technology, 381, 125136(2020).

    [14] Pronko P P, Dutta S K, Du D et al. Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses[J]. Journal of Applied Physics, 78, 6233-6240(1995).

    [15] Dutta Majumdar J, Manna I. Laser material processing[J]. International Materials Reviews, 56, 341-388(2011).

    [16] Phillips K C, Gandhi H H, Mazur E et al. Ultrafast laser processing of materials: a review[J]. Advances in Optics and Photonics, 7, 684-712(2015).

    [17] Sima F, Sugioka K, Vázquez R M et al. Three-dimensional femtosecond laser processing for lab-on-a-chip applications[J]. Nanophotonics, 7, 613-634(2018).

    [18] Malinauskas M, Žukauskas A, Hasegawa S et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 5, e16133(2016).

    [19] Fasasi A Y, Mwenifumbo S, Rahbar N et al. Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications[J]. Materials Science and Engineering C, 29, 5-13(2009).

    [20] Waynant R W, Ilev I K, Gannot I. Mid-infrared laser applications in medicine and biology[J]. Philosophical Transactions of the Royal Society of London Series A, 359, 635-644(2001).

    [21] Carr C W, Radousky H B, Rubenchik A M et al. Localized dynamics during laser-induced damage in optical materials[J]. Physical Review Letters, 92, 087401(2004).

    [22] DeMange P, Negres R A, Raman R N et al. Role of phase instabilities in the early response of bulk fused silica during laser-induced breakdown[J]. Physical Review B, 84, 054118(2011).

    [23] Ma B, Lu M L, Wang K et al. Depth position recognition-related laser-induced damage test method based on initial transient damage features[J]. Optics Express, 24, 17698-17710(2016).

    [24] Tochio T, Sakakura M, Shimotsuma Y et al. Transient stress imaging after irradiation with a focused femtosecond laser pulse inside a single crystal[J]. Japanese Journal of Applied Physics, 51, 126602(2012).

    [25] Downer M C, Fork R L, Shank C V. Femtosecond imaging of melting and evaporation at a photoexcited silicon surface[J]. Journal of the Optical Society of America B, 2, 595-599(1985).

    [26] Bonse J, Bachelier G, Siegel J et al. Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide[J]. Journal of Applied Physics, 103, 054910(2008).

    [27] von der Linde D, Sokolowski-Tinten K. The physical mechanisms of short-pulse laser ablation[J]. Applied Surface Science, 3, 1-10(2000).

    [28] Sokolowski-Tinten K, Bialkowski J, Cavalleri A et al. Transient states of matter during short pulse laser ablation[J]. Physical Review Letters, 81, 224-227(1998).

    [29] Bonse J, Bachelier G, Siegel J et al. Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium[J]. Physical Review B, 74, 134106(2006).

    [30] Domke M, Rapp S, Schmidt M et al. Ultrafast pump-probe microscopy with high temporal dynamic range[J]. Optics Express, 20, 10330-10338(2012).

    [31] Hernandez-Rueda J, Puerto D, Siegel J et al. Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz[J]. Applied Surface Science, 258, 9389-9393(2012).

    [32] Mohammed A, Abdullah A. Scanning electron microscopy (SEM): a review[J]. Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, 7-9(2018).

    [33] Peterman E J G, Monshouwer R, van Stokkum I H M et al. Ultrafast singlet excitation transfer from carotenoids to chlorophylls via different pathways in light-harvesting complex II of higher plants[J]. Chemical Physics Letters, 264, 279-284(1997).

    [34] Douhal A, Lahmani F, Zewail A H. Proton-transfer reaction dynamics[J]. Chemical Physics, 207, 477-498(1996).

    [35] Dao L V, Lincoln C, Lowe M et al. Spectrally resolved femtosecond two-color three-pulse photon echoes: study of ground and excited state dynamics in molecules[J]. The Journal of Chemical Physics, 120, 8434-8442(2004).

    [36] Sugioka K. Progress in ultrafast laser processing and future prospects[J]. Nanophotonics, 6, 393-413(2017).

    [37] Yamanouchi K. The next frontier[J]. Science, 295, 1659-1660(2002).

    [38] Gruenke N L, Cardinal M F, McAnally M O et al. Ultrafast and nonlinear surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 45, 2263-2290(2016).

    [39] Scardaci V, Compagnini G. Raman spectroscopy investigation of graphene oxide reduction by laser scribing[J]. Journal of Carbon Research, 7, 48(2021).

    [40] Zhang X L, Jiang J, Lai C H et al. Self‐calibration Raman enhancement characteristics of silver nanoparticles/carbon nanotubes composite structure[J]. Chinese Journal of Lasers, 51, 1911001(2024).

    [41] Wang N, Liu Y, Zhang J et al. Recent advances and applications of surface-enhanced Raman spectroscopy technology based on flexible substrates[J]. Chinese Journal of Lasers, 51, 2107401(2024).

    [42] Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Physical Review Letters, 56, 930-933(1986).

    [43] Fu X, Xie Z G, Zhang H J et al. A novel electrochemical atomic force microscope and its applications[J]. Chinese Journal of Lasers, 35, 147-150(2008).

    [44] Jin J C, Jin C S, Deng W Y et al. Testing method for optical supersmooth substrate surface by atomic force microscopy[J]. Chinese Journal of Lasers, 38, 1108003(2011).

    [45] Schermelleh L, Carlton P M, Haase S et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 320, 1332-1336(2008).

    [46] Hwang D J, Misra N, Grigoropoulos C P et al. In situ monitoring of material processing by a pulsed laser beam coupled via a lensed fiber into a scanning electron microscope[J]. Journal of Vacuum Science & Technology A, 26, 1432-1438(2008).

    [47] Hwang D, Ryu S G, Misra N et al. Nanoscale laser processing and diagnostics[J]. Applied Physics A, 96, 289-306(2009).

    [48] Yin J, Hwang D, Siboni H Z et al. Efficiency improvement by using metal-insulator-semiconductor structure in InGaN/GaN micro-light-emitting diodes[J]. Frontiers of Optoelectronics, 17, 8(2024).

    [49] Hwang D J, Xiang B, Ryu S G et al. In-situ monitoring of optical near-field material processing by electron microscopes[J]. Applied Physics A, 105, 317-321(2011).

    [50] Ni J L, Wei Q Y, Zhang Y Q et al. Super-resolution three-dimensional structured illumination profilometry for in situ measurement of femtosecond laser ablation morphology[J]. APL Photonics, 8, 101302(2023).

    [51] Zvagelsky R, Mayer F, Beutel D et al. Towards in-situ diagnostics of multi-photon 3D laser printing using optical coherence tomography[J]. Light: Advanced Manufacturing, 3, 466-480(2022).

    [52] Garcia-Lechuga M, Haahr-Lillevang L, Siegel J et al. Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses[J]. Physical Review B, 95, 214114(2017).

    [53] Fuentes-Edfuf Y, Garcia-Lechuga M, Solis J et al. Ultrafast electron dynamics and optical interference tomography of laser excited steel[J]. Laser & Photonics Reviews, 16, 2200511(2022).

    [54] Zhou K, Jia X, Jia T Q et al. The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging[J]. Journal of Applied Physics, 121, 104301(2017).

    [55] Han R Z, Zhang Y C, Jiang Q L et al. Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces[J]. Opto-Electronic Science, 3, 230013(2024).

    [56] Zhang Y C, Jiang Q L, Long M Q et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications[J]. Opto-Electronic Science, 1, 220005(2022).

    [57] Fang R R, Vorobyev A, Guo C L. Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals[J]. Light: Science & Applications, 6, e16256(2017).

    [58] ElKabbash M, Fang R R, Vorobyev A et al. Imaging nanostructure phase transition through ultrafast far-field optical ultramicroscopy[J]. Cell Reports Physical Science, 2, 100651(2021).

    [59] Rapp S, Kaiser M, Schmidt M et al. Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation[J]. Optics Express, 24, 17572-17592(2016).

    [60] Hwang D J, Jeon H, Grigoropoulos C P et al. Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film[J]. Applied Physics Letters, 91, 251118(2007).

    [61] Lian Y L, Jiang L, Sun J Y et al. Ultrafast quasi-three-dimensional imaging[J]. International Journal of Extreme Manufacturing, 5, 045601(2023).

    [62] Mulko L, Soldera M, Lasagni A F. Structuring and functionalization of non-metallic materials using direct laser interference patterning: a review[J]. Nanophotonics, 11, 203-240(2022).

    [63] Martín-Fabiani I, Riedel S, Rueda D R et al. Micro- and submicrostructuring thin polymer films with two and three-beam single pulse laser interference lithography[J]. Langmuir, 30, 8973-8979(2014).

    [64] Alvarez-Alegria M, Ruiz de Galarreta C, Siegel J. Real-time 3D visualization of the formation of micrograting structures upon direct laser interference patterning of Ge[J]. Laser & Photonics Reviews, 17, 2300145(2023).

    [65] Xu J, Min C J, Zhang Y Q et al. Imaging ultrafast evolution of subwavelength-sized topography using single-probe structured light microscopy[J]. Photonics Research, 10, 1900-1908(2022).

    [66] Su X Y, Zhang Q C. Dynamic 3-D shape measurement method: a review[J]. Optics and Lasers in Engineering, 48, 191-204(2010).

    [67] Su X Y, Chen W J. Fourier transform profilometry: a review[J]. Optics and Lasers in Engineering, 35, 263-284(2001).

    [68] Chen F, Brown G M, Song M M. Overview of 3-D shape measurement using optical methods[J]. Optical Engineering, 39, 10-22(2000).

    [69] Yao Y H, He Y L, Qi D L et al. Single-shot real-time ultrafast imaging of femtosecond laser fabrication[J]. ACS Photonics, 8, 738-744(2021).

    [70] Yao J L, Qi D L, Liang H T et al. Exploring femtosecond laser ablation by snapshot ultrafast imaging and molecular dynamics simulation[J]. Ultrafast Science, 2022, 9754131(2022).

    [71] Touil M, Idlahcen S, Becheker R et al. Acousto-optically driven lensless single-shot ultrafast optical imaging[J]. Light: Science & Applications, 11, 66(2022).

    [72] Shimada K, Ishijima A, Saiki T et al. Spectrum shuttle for producing spatially shapable GHz burst pulses[J]. Advanced Photonics Nexus, 3, 016002(2024).

    [73] Jin C Z, Xu Y M, Qi D L et al. Single-shot intensity- and phase-sensitive compressive sensing-based coherent modulation ultrafast imaging[J]. Physical Review Letters, 132, 173801(2024).

    [74] Meng Y Z, Liu Y, Yin F et al. High-channel spectral-temporal active recording (H-STAR) for femtosecond scenes observation in a single-shot[J]. ACS Photonics, 11, 419-427(2024).

    Zhiyong Tan, Jielei Ni, Qianyi Wei, Jiahui Pan, Yuquan Zhang, Ke Zhang, Xiaocong Yuan, Changjun Min. Research Progress on In-Situ Characterization Technology of Laser Micro-Nano Fabrication (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(2): 0209001
    Download Citation