• Laser & Optoelectronics Progress
  • Vol. 51, Issue 1, 10003 (2014)
You Jie*, Yu Hailong, Wang Xiaolin, Zhou Pu, and Xu Xiaojun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.010003 Cite this Article Set citation alerts
    You Jie, Yu Hailong, Wang Xiaolin, Zhou Pu, Xu Xiaojun. Advance in Study on Photodarkening of Rare-Earth Doped Fibers[J]. Laser & Optoelectronics Progress, 2014, 51(1): 10003 Copy Citation Text show less
    References

    [1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. J Opt Soc Am B, 2010, 27(11): B63-B92.

    [2] Zhu Zongjiu, Xu Lixin, Mao Qinghe, et al.. Photodarkening in ytterbium-doped fibers with high doping concentration[J]. Anta Photonica Sinica, 2007, 36(1): 26-29.

    [3] Yang Ling, Chen Genxiang, Liang Yi, et al.. Ultraviolet photosensitivity in Ge-doped fiber[J]. Optical Communication Technology, 1996, 20(3): 232-236.

    [4] He Wei, Li Jianzhi, Mei Jiachun. Experimental study on photolytic index changes in germanosilicate fiber[J]. J Inorganic Materials, 2005, 20(1): 201-214.

    [5] Liu Fangxin, Zhang Chenhua, Li Zongmin, et al.. Research on r-ray radiolytic loss[J]. J University of Science and Technology of China, 1994, 24(3): 390-393.

    [6] Han Yanling, Xiao Wen, Yi Xiaosu, et al.. Active recovery effect of irradiation optical fiber[J]. Infrared and Laser Engineering, 2008, 37(1): 128-131.

    [7] Sheng Yubang, Xing Ruixian, Luan Huaixun, et al.. Gamma radiation effects on the optical properties of Yb-doped silicate glasses[J]. J Inorganic Materials, 2012, 27(8): 860-864.

    [8] Wu Wuming, Xiao Hu, Xu Jiangming, et al.. Research progress of tandem-pumped fiber laser[J]. Laser & Optoelectronics Progress, 2011, 48(9): 091402.

    [9] J Canning, Adrian L G Carter, M G Sceats. Correlation between photodarkening and index change during 193 nm irradiation of germanosilicate and phosphosilicate fibers[J]. J Lightwave Technol, 1997, 15(8): 1348-1356.

    [10] Nathaniel Groothoff, John Canning, Mattias slund, et al.. 193 nm photodarkening of ytterbium doped optical fibre[C]. BGPP, 2007. BTuC2.

    [11] Cheng Y, Oton C J, Boyland A J, et al.. Photodarkening of 488 nm-pumped Sm3+-doped germanosilicate fiber laser[C]. CLEO, 2009.

    [12] Lauzon J, Sceats M G, Krug P A, et al.. UV-induced transient photodarkening and photoluminescence in Ge-doped optical fibers[C]. OFC, 1994.

    [13] I Manek-Hnninger, J Boullet, T Cardinal, et al.. Photodarkening and photobleacking of an ytterbium-doped silica double-clad LMA fiber[J]. Opt Epxress, 2007, 15(4): 1606-1611.

    [14] Brian P Fox, Kelly Simmons-Potter, William J Thomes Jr, et al.. Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents[J]. IEEE Trans Nuclear Science, 2010, 57(3): 1618-1625.

    [15] T Arai, K Ichii, S Tanigawa, et al.. Defect analysis of photodarkened and gamma-ray irradiated ytterbium-doped silica glasses[C]. OFC, 2009. OWT2.

    [16] Martin Leich, Sylvia Jetschke, Sonja Unger A, et al.. Temperature influence on the photodarkening kinetics in Yb-doped silica fibers[J]. J Opt Soc Am B, 2011, 28(1): 65-68.

    [17] Sderlund M J, Ponsoda J J M I, Koplow J P, et al.. Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling[J]. Opt Express, 2009, 17(12): 9940-9946.

    [18] Mikko J Sderlund, Joan J Montiel I Ponsoda, Simo K T Tammela, et al.. Mode-induced transverse photodarkening loss variations in large-mode-area ytterbium doped silica fibers[J]. Opt Express, 2008, 16(14): 10633-10640.

    [19] Leich M, Jetschke S, Unger S, et al.. Acceleration of photodarkening measurements in Yb-doped fibers by enhanced temperatures[C]. CLEO Europe, 2009.

    [20] M M Broer, D M Krol, D J Digiovanni. Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber[J]. Opt Lett, 1993, 18(10): 799-801.

    [21] Atkins G R, Ouellette F. Reversible photodarkening and bleaching in Tb3+-doped optical fibers[J]. Opt Lett, 1994, 19(13): 951-953.

    [22] B P Fox, Z V Schneider, K Simmons-Potter, et al.. Spectrally resolved transmission loss in gamma irradiated Yb-doped optical fibers[J]. IEEE J Quantum Electron, 2008, 44(6): 581-586.

    [23] B Tortech, A M Van Uffelen, J P Meunier, et al.. Gamma radiation induced loss in erbium doped optical fibers[J]. J Non-Cryst Solids, 2007, 353(5-7): 477-480.

    [24] Glebov L B. Linear and nonlinear photoionization of silicate glasses[J]. Glass Sci Technol, 2002, 75(C2): 73-90.

    [25] Williams G M, Wright B M, Mack W D, et al.. Projecting the performance of erbium-doped fiber devices in a space radiation environment[C]. SPIE, 1999. 3848: 271-280.

    [26] Askins C G, Putnam M A. Photodarkening and photobleaching in fiber optic Bragg gratings[J]. J Lightwave Technol, 1997, 15(8): 1363-1370.

    [27] J J Koponen, M J Sderlund, S K Tammela. Measuring photodarkening from single-mode ytterbium doped silica fibers[J]. Opt Express, 2006, 14(24): 11539-11544.

    [28] Gebavi H, Taccheo S, Milanese D, et al.. Photodarkening measurements in Yb-doped silica fibers in correlation with cooperative luminescence[C]. SPIE, 2012, 8433: 843322.

    [29] C Basu, S Yoo, A J Boyland, et al.. Influence of temperature on the post-irradiation temporal loss evolution in Yb-doped aluminosilicate fibers, photodarkened by 488 nm CW irradiation [J]. Opt Lett, 2007, 32(12): 1626-1628.

    [30] Kitabayashi T, Ikeda M, Nakai M, et al.. Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping[C]. OFC, 2006. OThC5.

    [31] Sylvia Jetschke, Sonja Unger, Ulrich Rpke, et al.. Photodarkening in Yb doped fibers experimental evidence of equilibrium states depending on the pump power[J]. Opt Express, 2007, 15(22): 14838-14843.

    [32] Joan J Montiel I Ponsoda, Mikko J Sderlund, Jeffrey P Koplow, et al.. Photodarkening-induced increase of fiber temperature[J]. Appl Opt, 2010, 49(22): 4139-4144.

    [33] Inoue N, Shirakawa A, Ueda K. Photodarkening and photobleaching of Yb-doped fibers by laser diodes[C]. CLEO, 2010. CMGG5.

    [34] Piccoli R, Mechin D, Robin T, et al.. Lifetime reduction due to photodarkening phenomenon in ytterbium-doped fibers and rate equation term[J]. Opt Lett, 2013, 38(21): 4370-4373.

    [35] O Berné, M Caussanel, Gilard O. A model for the prediction of EDFA gain in a space radiation environment[J]. IEEE Photon Technol Lett, 2004, 16(10): 2227-2229.

    [36] Fox B P, Simmons-Potter K, Simmons J H, et al.. Radiation damage effects in doped fiber materials[C]. SPIE, 2008, 6873: 68731F.

    [37] D L Griscom, M E Gingerich, E J Friebele. Radiation induced defects in glasses: origin of power-lawdependence of concentration on dose[J]. Phys Rev Lett, 1993, 71(7): 1019-1022.

    [38] Manek-Hnninger I, Boullet J, Cardinal T, et al.. Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber[J]. Opt Express, 2007, 15(4): 1606-1611.

    [39] Xiong L, Sekiya E H, Saito K. Yb-doped silica preform precursor nanoparticles and the photodarkening in them[C]. ACP, 2009. ThBB4.

    [40] R Peretti, A-M Jurdyc, B J Acquier, et al.. How do traces of thulium explain photodarkening in Yb doped fibers[J]. Opt Express, 2010, 18(19): 20455-20460.

    [41] Jetschke S, Unger S, Schwuchow A, et al.. Evidence of Tm impact in low-photodarkening Yb-doped fibers[J]. Opt Express, 2013, 21(6): 7590-7598.

    [42] Koponen J, Laurila M, Hotoleanu M. Demonstration of spatial distribution of photodarkening in Yb-doped[J]. Electron Lett, 2008, 44(16): 960-961.

    [43] Hotoleanu M, Koponen J, Kokki T, et al.. Experimental verification of spatial distribution of photodarkening in large mode area ytterbium doped fibers[C]. CLEO, 2008. CFS3.

    [44] Changgeng Ye, Joan J Montiel I Ponsoda, Ari Tervonen, et al.. Refractive index change in ytterbium-doped fibers induced by photodarkening and thermal bleaching[J]. Appl Opt, 2010, 49(30): 5799-5805.

    [45] Taccheo S, Gebavi H, Monteville A, et al.. Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation[J]. Opt Express, 2011, 19(20): 19340-19345.

    [46] Zhang Xiaojie, Izutsu M, Kumagai H, et al.. Femtosecond optical Kerr studies of photodarkening effect on nonlinear optical properties of CdSxSe1-x doped glass[J]. Opt Commun, 1997, 142(4-6): 273-278.

    [47] Paul M C, Yu Kir′Yanov, A V B. Yb2O3 doped yttrium-alumino-silicate nano-particles based LMA optical fibers for high-power fiber lasers[J]. J Lightwave Technol, 2012, 30(13): 2062-2068.

    [48] Mitsunori Saito, Kaoru Nakajima, M Shishido. Polymer coating on infrared silver halide fiber for photodarkening protection[J]. J Lightwave Technol, 2002, 20(3): 441-447.

    [49] Hrvoje Gebavi, Stefano Taccheo, Daniel Milanese, et al.. Temporal evolution and correlation between cooperative luminescence and photodarkening in ytterbium doped silica fibers[J]. Opt Express, 2011, 19(25): 25078-25085.

    [50] Engholm M, Jelger P, Laurell F, et al.. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping optical fibers[J]. Opt Lett, 2009, 34(8): 1285-1287.

    [51] Sylvia Jetschke, Sonja Unger, Anka Schwuchow, et al.. Efficient Yb laser fibers with low photodarkening by optimization of the core composition[J]. Opt Express, 2008, 16(20): 15540-15545.

    [52] M E Likhachev, S S Aleshkina, A V Shubin, et al.. Large-mode-area highly Yb-doped photodarkening-free Al2O3-P2O5-SiO2-based fiber[C]. CLEO Europe, 2011. CJ_P24.

    [53] Yu C. Research on photodarkening in rare earth doped fibers[J]. J Rare Earths, 2012, 30(11): 1102-1105.

    [54] S Yoo, M P Kalita, A J Boyland, et al.. Ytterbium doped nano-crystalline optical fiber for reduced photodarkening [C]. CLEO, 2010. JWA98.

    [55] Sylvia Jetschke, Martin Leich, Sonja Unger, et al.. Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers[J]. Opt Express, 2011, 19(15): 14473-14478.

    [56] Sderlund M J, Montiel Ponsoda J J, Honkanen S. Measurement of thermal binding energy of photodarkening-induced color centers in ytterbium-doped silica fibers[C]. CLEO Europe, 2009. CE3-3.

    [57] Gebavi H, Taccheo S, Lablonde L, et al.. Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure[J]. Opt Lett, 2013, 38(2): 196-198.

    [58] Jetschke S, Unger S, Rpke U, et al.. Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power[J]. Opt Express, 2007, 15(22): 14838-14843.

    CLP Journals

    [1] Liu Chaoping, Liao Lei, Li Jinyan. Research Progress on Photodarkening of Yb-Doped Fiber Lasers[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70002

    [2] Shi Chen, Tao Rumao, Wang Xiaolin, Zhou Pu, Xu Xiaojun, Lu Qisheng. New Progress and Phenomena of Modal Instability in Fiber Lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 201004

    [3] Chen Yisha, Liao Lei, Li Jinyan. Research Progress on Mode Instability Mechanism and Suppression Methods for Fiber Lasers[J]. Laser & Optoelectronics Progress, 2017, 54(8): 80001

    You Jie, Yu Hailong, Wang Xiaolin, Zhou Pu, Xu Xiaojun. Advance in Study on Photodarkening of Rare-Earth Doped Fibers[J]. Laser & Optoelectronics Progress, 2014, 51(1): 10003
    Download Citation