• Laser & Optoelectronics Progress
  • Vol. 51, Issue 10, 100601 (2014)
Xu Hongjie* and Du Saihui
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.100601 Cite this Article Set citation alerts
    Xu Hongjie, Du Saihui. Temperature Dependence of Absorption and Emission Cross Sections in Erbium-Doped Fibers[J]. Laser & Optoelectronics Progress, 2014, 51(10): 100601 Copy Citation Text show less
    References

    [1] Zhang Guicai. The Principles and Techologies of Fiber-Optic Gyroscope[M]. Beijing: National Defense Industry Press, 2008. 324-326.

    [2] Liang Quanting, Granpayeh N. Temperature dependence of the gain in Er- doped fiber amplifiers[J]. Acta Optica Sinica, 1995, 15(8): 1115-1118.

    [3] Nobuyuki Kagi, Akira Oyobe, Kazunori Nakamura. Temperature dependence of the gain in erbium- doped fibers[J]. IEEE Journal of Lightwave Technology,1991, 9(2): 261-26.

    [4] Kemtchou J, Duhamel M, Chatton F, et al.. Comparison of temperature dependences of absorption and emission cross sections in different glass hosts of Erbium- doped fibers[J]. Optical Amplifiers and Their Applications, OSA Trends Photon, 1996, 5: 129-132.

    [5] Makoto Yamada, Makoto Shimizu, Masaharu Horiguchi, et al.. Temperature dependence of signal gain in Er3 +- doped optical fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 1992, 28 (3): 640-649.

    [6] Suyama M, Laming R I, Payne D N. Temperature dependent gain and noise characteristics of a 1480 nm- pumped erbium-doped fiber amplifier[J]. Electronics Letters, 1990, 26(21): 1756-1758.

    [7] P F Wysocki, M J F Digonnet, B Y Kim, et al.. Characteristics of erbium- doped superfluorescent fiber sources for interferrometric sensor applications[J]. Journal of Lightwave Technology, 1994, 12(3): 550-567.

    [8] Paul F Wysocki, Nicholas Conti, Douglas Holcomb. Simple modeling approach for the temperature dependence of the gain of erbium-doped fiber amplifiers[C]. SPIE, 1999, 3847: 214-223.

    [9] Maxim Bolshtyansky, Paul Wysocki, Nicholas Conti. Model of temperature dependence for gain shape of erbiumdoped fiber amplifier[J]. Journal of Lightwave Technology, 2000, 18(11): 1533-1540.

    [10] Wysocki Paul F, Byoung Yoon Kim, Digonnet Michel J F, et al.. Temperature stabilized broadband light source[P]. European Patent: 0476914A2, 1996-01-17

    [11] Pang Yong, Jiang Peixuan, Xu Daxiong. A simple method for estimating absorption and emission cross sections for erbium-doped fibers[J]. Acta Optica Sinica, 1995, 15(12): 1721-1725.

    [12] An Haozhe, Pang Yong, Jiang Peixuan, et al.. Design optimization for Erbium-doped fiber amplifier[J]. Acta Photonica Sinia, 1996, 25(1): 68-74.

    [13] McCumber D E. Theory of phonon-terminated optical masers[J]. Phy Rev, 1964, 134(2A): 299-306.

    CLP Journals

    [1] Zhou Zichao, Wang Xiaolin, Su Rongtao, Zhang Hanwei, Zhou Pu, Xu Xiaojun. Theoretical Study on SBS Effect Suppression of Gradient Doping Gain Fibers[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70604

    Xu Hongjie, Du Saihui. Temperature Dependence of Absorption and Emission Cross Sections in Erbium-Doped Fibers[J]. Laser & Optoelectronics Progress, 2014, 51(10): 100601
    Download Citation