• Frontiers of Optoelectronics
  • Vol. 2, Issue 2, 187 (2009)
Changkui HU1、2、* and Deming LIU1
Author Affiliations
  • 1College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2School of Science, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.1007/s12200-009-0027-7 Cite this Article
    Changkui HU, Deming LIU. Polarization characteristics of subwavelength aluminum wire grating in near infrared[J]. Frontiers of Optoelectronics, 2009, 2(2): 187 Copy Citation Text show less
    References

    [1] Southwell W H. Pyramid-array surface-relief structure producing antireflection index matching on optical surfaces. Journal of the Optical Society of America A, 1991, 8(3): 549-553

    [2] Motamedi M E, Southwell W H. Antireflection surfaces in silicon using binary optical technology. Applied Optics, 1992, 31(22): 4371-4376

    [3] Smith R E, Warren M E, Wendt J R, Vawter G A. Polarizationsensitive subwavelength antireflection surfaces on semiconductor for 975 nm. Optics Letters, 1996, 21(15): 1201-1203

    [4] Santos J M, Bernardo L M. Antireflection structure with use of multilevel subwavelength zero-order gratings. Applied Optics, 1997, 36(34): 8935-8938

    [5] Zhou L, Liu W, Liu Q, Zhang L, Yang T. A novel nano-optics polarization beam splitter/combiner for telecom applications. Proceedings of SPIE, 2005, 5623: 248-253

    [6] Schnabel B, Kley E B, Wyrowski F. Study on polarizing visible light by subwavelength-period metal-stripe gratings. Optical Engineering, 1999, 38(2): 220-226

    [7] Yu Z, Deshpande P, Wu W, Wang J, Chou S Y. Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography. Applied Physics Letters, 2000, 77(7): 927-929

    [8] Wang J J, Zhang W, Deng X G, Deng J D, Liu F, Sciortino P, Chen L. High-performance nanowire-grid polarizers. Optics Letters, 2005, 30(2): 195-197

    [9] Zhang L, Li C F, Li J, Zhang F, Shi L N. Design and fabrication of metal-wire nanograting used as polarizing beam splitter in optical telecommunication. Journal of Optoelectronics and Advanced Materials, 2006, 8(2): 847-850

    [10] Tamada H, Doumuki T, Yamaguchi T, Matsumoto S. Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm wavelength band. Optics Letters, 1997, 22(6): 419-421

    [11] Johnson J H. Wire grid polarizers for visible wavelengths. Dissertation for the Doctoral Degree. Rochester: University of Rochester, 2003, 35-58

    [12] Palik E D. Handbook of Optical Constants of Solids. Orlando: Academic Press, 1985, 286

    [13] Moharam M G, Gaylord T K. Diffraction analysis of dielectric surface-relief gratings. Journal of the Optical Society of America, 1982, 72(10): 1385-1392

    [14] Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of metallic surface-relief gratings. Journal of the Optical Society of America, 1986, 3(11): 1780-1787

    [15] Moharam M G, Grann E B, Pommet D A, Gaylord T K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. Journal of the Optical Society of America A, 1995,12(5): 1068-1076

    [16] Hceht E, Zajak A. Optics. 3rd ed. Massachusetts: Addison-Wesley, 1998, 335-337

    [17] Flory F, Escoubas L, Lazarids B. Artificial anisotropy and polarizing filters. Applied Optics, 2002, 41(16): 3332-3335

    Changkui HU, Deming LIU. Polarization characteristics of subwavelength aluminum wire grating in near infrared[J]. Frontiers of Optoelectronics, 2009, 2(2): 187
    Download Citation