• Infrared and Laser Engineering
  • Vol. 50, Issue 9, 20200463 (2021)
Chen Wang1、2, Yuan Ren1、2, Hao Wu1、2, and Song Qiu1、2
Author Affiliations
  • 1Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
  • 2Lab of Quantum Detection & Awareness, Space Engineering University, Beijing 101416, China
  • show less
    DOI: 10.3788/IRLA20200463 Cite this Article
    Chen Wang, Yuan Ren, Hao Wu, Song Qiu. Generation of optical vortex and its research progress in inertial measurement (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20200463 Copy Citation Text show less
    References

    [1] Gbur G. Singular Optics[M]. US: WileyVCH Verlag GmbH & Co., 2015.

    [2] Bn M, Wolf E. Principles of Optics: Electromagic They of Propagation, Interference Diffraction of Light [M]. 7th ed. Britain: Pergamon Press, 1999.

    [3] H Wolter. Concerning the path of light upon total reflection. Journal of Optics A Pure & Applied Optics, 11, 090401(2009).

    [4] Braunbek W, Laukien G. Features of refraction by a semiplane[J]. Optik, 1952, 9: 174179.

    [5] P Coullet, L Gil, F Rocca. Optical vortices. Optics Communications, 73, 403-408(1989).

    [6] L Allen, M W Beijersbergen, R J C Spreeuw, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185-8189(1992).

    [7] S M Barnett, L Allen. Orbital angular momentum and nonparaxial light beams. Optics Communications, 110, 670-678(1994).

    [8] Y Q Zhang, X Y Zeng, L Ma, et al. Manipulation for superposition of orbital angular momentum states in surface plasmon polaritons. Advanced Optical Materials, 7, 1900372(2019).

    [9] W Yang, X Qiu, L Chen. Research progress in detection, imaging, sensing, and micromanipulation application of orbital angular momentum of beams. Chinese Journal of Lasers, 47, 0500013(2020).

    [10] Jian Wang, Jun Liu, Yifan Zhao. Research progress of structured light coding/decoding communications. Acta Optica Sinica, 39, 0126013(2019).

    [11] Y L Gu, G Gbur. Measurement of atmospheric turbulence strength by vortex beam. Opt Commun, 283, 1209-1212(2010).

    [12] W Zhang, D Zhang, X Qiu, et al. Quantum remote sensing of the angular rotation of structured objects. Physical Review A, 100, 043832(2019).

    [13] M P J Lavery, C Peuntinger, K Günthneret, et al. Free-space propagation of high-dimensional structured optical fields in an urban environment. Science Advances, 3, e1700552(2017).

    [14] Zhongsheng Man, Zheng Xi, Xiaocong Yuan, et al. Dual coaxial longitudinal polarization vortex structures. Physical Review Letters, 124, 103901(2020).

    [15] Y Shen, X Wang, Z Xie, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Science & Applications, 8, 90(2019).

    [16] M W Beijersbergen, L Allen, H E L O Veen, et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications, 96, 123-132(1993).

    [17] G Liang, Q Wang. Controllable conversion between Hermite Gaussian and Laguerre Gaussian modes due to cross phase. Opt Express, 27, 10684-10691(2019).

    [18] C Wang, Y Ren, T Liu, et al. Generation and measurement of high-order optical vortices by using the cross phase. Applied Optics, 59, 4040(2020).

    [19] Y Ren, C Wang, T Liu, et al. Polygonal shaping and multi-singularity manipulation of optical vortices via high-order cross-phase. Opt Express, 28, 26257-26266(2020).

    [20] C Wang, Y Ren, T Liu, et al. New kind of Hermite–Gaussian-like optical vortex generated by cross phase. Chinese Optics Letters, 18, 100501(2020).

    [21] Jingtao Xin, Kai Li, Wen Zhang, et al. Generation of vector beams by Sagnac interferometer and spiral phase plates. Infrared and Laser Engineering, 46, 0217001(2017).

    [22] C Wang, T Liu, Y Ren, et al. Generating optical vortex with large topological charges by spiral phase plates in cascaded and double-pass configuration. Optik, 171, 404-412(2018).

    [23] Wang Chen, Liu Tong, Shao Qiongling, et al. Quadrupling topological ges of vtex using multipassed spiral phase plate[J]. Infrared Laser Engineering, 2018, 47(9): 0918008. (in Chinese)

    [24] E U Wagemann, H J Tiziani, M Reicherter, et al. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Optics Letters, 24, 608(1999).

    [25] D Ganic, M Hain, M Gu, et al. Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%. Optics Letters, 27, 1351(2002).

    [26] Lixiang Chen, Yuanying Zhang. Research progress on preparation, manipulation, and remote sensing applications of high-order orbital angular momentum of photons. Acta Physica Sinica, 64, 164210(2015).

    [27] S Takashima, H Kobayashi, K Iwashita. Integer multiplier for the orbital angular momentum of light using a circular-sector transformation. Physical Review A, 100, 063822(2019).

    [28] T W Clark, R F Offer, S Franke-Arnold, et al. Comparison of beam generation techniques using a phase only spatial light modulator. Opt Express, 24, 6249-6264(2016).

    [29] Weng X, Liu L, Sui G, et al. Realtime pixellevel polarization modulation using polarizedspatial light modulat based on phase vectization [J]. arXiv eprints, 2020: 2004.00446.

    [30] Y He, Z Liu, Y Liu, et al. Higher-order laser mode converters with dielectric metasurfaces. Optics Letters, 40, 5506(2015).

    [31] Yang Weidong, Qiu Xiaodong, Chen Lixiang. Research progress in detection, imaging, sensing, micromanipulation application of bital angular momentum of beams[J]. Chinese Journal of Lasers, 2020, 47(5): 0500013. (in Chinese)

    [32] Wang Chen, Liu Tong, Shao Qiongling, et al. Method research of optical vtex generation based on sagnac interferometer[J]. Acta Photonica Sinica, 2018, 47(3): 326002. (in Chinese)

    [33] Z Ji, W Liu, S Krylyuk, et al. Photocurrent detection of the orbital angular momentum of light. Science, 368, 763-767(2020).

    [34] Q Liu, J Pan, Z Wan, et al. Generation methods for complex vortex structured light field. Chinese Journal of Lasers, 47, 0500006(2020).

    [35] B A Garetz, S Arnold. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave retardation plate. Optics Communications, 31, 1-3(1979).

    [36] B A Garetz. Angular Doppler effect. J Opt Soc Am A, 71, 609-611(1981).

    [37] Bart S M, Zambrini R. bital Angular Momentum of Light [M]. New Yk: Springer, 2007: 277311.

    [38] M Padgett. A new twist on the Doppler shift. Physics Today, 67, 58-59(2014).

    [39] A Belmonte, J P Torres. Optical Doppler shift with structured light. Opt Lett, 36, 4437-4439(2011).

    [40] M P Lavery, F C Speirits, S M Barnett, et al. Detection of a spinning object using light's orbital angular momentum. Science, 341, 537-540(2013).

    [41] F C Speirits, M P J Lavery, M J Padgett, et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica, 1, 1-4(2014).

    [42] C Rosales-Guzmán, N Hermosa, A Belmonte, et al. Direction-sensitive transverse velocity measurement by phase-modulated structured light beams. Optics Letters, 39, 5415-5418(2014).

    [43] M P L D B Phillips, F C Speirits, S M Barnett, et al. Rotational Doppler velocimetry to probe the angular velocity of spinning microparticles. Physical Review, 90, 011801(2014).

    [44] S Fu, C Gao, T Wang, et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions. Opt Express, 25, 20098-20108(2017).

    [45] W Zhang, J Gao, D Zhang, et al. Free-space remote sensing of rotation at the photon-counting level. Phys Rev A, 10, 044014(2018).

    [46] S Qiu, T Liu, Z Li, et al. Influence of lateral misalignment on the optical rotational Doppler effect. Appl Opt, 58, 2650-2655(2019).

    [47] S Qiu, T Liu, Y Ren, et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect. Optics Express, 27, 24781-24792(2019).

    [48] Z Zhang, L Cen, J Zhang, et al. Rotation velocity detection with orbital angular momentum light spot completely deviated out of the rotation center. Opt Express, 28, 6859-6867(2020).

    [49] A Q Anderson, E F Strong, B M Heffernan, et al. Detection technique effect on rotational Doppler measurements. Opt Lett, 45, 2636-2639(2020).

    [50] Yu T, Xia H, Fan Z, et al. Study on the influence of phase noise on coherent beam combined BesselGaussian beam[J]. Optics Communications, 2019, 436: 1420.

    [51] E Hodby, S A Hopkins, G Hechenblaikner, et al. Experimental observation of a superfluid gyroscope in a dilute Bose-Einstein condensate. Phys Rev Lett, 91, 090403(2003).

    [52] S Thanvanthri, K T Kapale, J P Dowling. Ultra-stable matter-wave gyroscopy with counter-rotating vortex superpositions in Bose–Einstein condensates. Journal of Modern Optics, 59, 1180-1185(2012).

    [53] F I Moxley, J P Dowling, W Dai, et al. Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates. Physical Review A, 93, 053603(2016).

    [54] D G Lidzey, D D C Bradley, M S Skolnick, et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature, 395, 53-55(1998).

    [55] K S Daskalakis, S A Maier, S Kena-Cohen. Spatial coherence and stability in a disordered organic polariton condensate. Physical Review Letters, 115, 5301(2015).

    [56] Ren Yuan, Cheng Rui, Xie Lu, et al. Waveparticle vtex gyro: China, ZL201610318157.8[P]. 20160512.

    [57] Ren Yuan, Wang Gang, Xie Lu, et al. Vtex optical circulat: China, ZL201610319453. X [P]. 20160512.

    [58] Haijun Chen, Yuan Ren, Hua Wang. The dynamics of a matter-wave soliton under the effect of a two-dimensional constant external force field. Physica Scripta, 94, 115221(2019).

    [59] Wu H, Ren Y, Liu T, et al. Research on rotational dynamics acteristics of planar superimposed vtexes of exciton polariton condensates[J]. Acta Phys Sin, 2020, 69(23): 230303.

    [60] Moxley F I, Dowling J P, Dai W, et al. Sagnac interferometry with coherent vtex superposition states in excitonpolariton condensates[J]. Physical Review A, 2016, 93(5): 053603 .

    CLP Journals

    [1] Yuan Ren, Hao Wu, Chen Wang, Zhengliang Liu, Tong Liu, Zhenyu Xiong. Simulation analysis of some key parameters of quantum vortex gyroscope (Invited)[J]. Infrared and Laser Engineering, 2022, 51(4): 20220004

    Chen Wang, Yuan Ren, Hao Wu, Song Qiu. Generation of optical vortex and its research progress in inertial measurement (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20200463
    Download Citation