• Photonics Research
  • Vol. 11, Issue 10, 1606 (2023)
Shaoteng Wu1、2、5、*, Lin Zhang1, Rongqiao Wan1、6、*, Hao Zhou1, Kwang Hong Lee1, Qimiao Chen1、7、*, Yi-Chiau Huang3, Xiao Gong4, and Chuan Seng Tan1
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • 2State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3Applied Materials, Inc., Sunnyvale, California 95054, USA
  • 4Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
  • 5e-mail: shaoteng.wu@ntu.edu.sg
  • 6e-mail: rongqiao.wan@ntu.edu.sg
  • 7e-mail: chenqm@ntu.edu.sg
  • show less
    DOI: 10.1364/PRJ.491763 Cite this Article Set citation alerts
    Shaoteng Wu, Lin Zhang, Rongqiao Wan, Hao Zhou, Kwang Hong Lee, Qimiao Chen, Yi-Chiau Huang, Xiao Gong, Chuan Seng Tan. Ge0.92Sn0.08/Ge multi-quantum-well LEDs operated at 2-μm-wavelength on a 12-inch Si substrate[J]. Photonics Research, 2023, 11(10): 1606 Copy Citation Text show less
    References

    [1] P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, L. Vivien. Integrated germanium optical interconnects on silicon substrates. Nat. Photonics, 8, 482-488(2014).

    [2] J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel. Ge-on-Si laser operating at room temperature. Opt. Lett., 35, 679-681(2010).

    [3] R. Geiger, T. Zabel, H. Sigg. Group IV direct band gap photonics: methods, challenges, and opportunities. Front. Mater., 2, 52(2015).

    [4] Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, G. Roelkens. Novel light source integration approaches for silicon photonics. Laser Photon. Rev., 11, 1700063(2017).

    [5] Y. Zhou, Y. Miao, S. Ojo, H. Tran, G. Abernathy, J. M. Grant, S. Amoah, G. Salamo, W. Du, J. Liu, J. Margetis, J. Tolle, Y.-H. Zhang, G. Sun, R. A. Soref, B. Li, S.-Q. Yu. Electrically injected GeSn lasers on Si operating up to 100 K. Optica, 7, 924-928(2020).

    [6] K. P. Homewood, M. A. Lourenço. The rise of the GeSn laser. Nat. Photonics, 9, 78-79(2015).

    [7] O. Moutanabbir, S. Assali, X. Gong, E. O’Reilly, C. Broderick, B. Marzban, J. Witzens, W. Du, S.-Q. Yu, A. Chelnokov, D. Buca, D. Nam. Monolithic infrared silicon photonics: the rise of (Si)GeSn semiconductors. Appl. Phys. Lett., 118, 110502(2021).

    [8] A. Elbaz, D. Buca, N. von den Driesch, K. Pantzas, G. Patriarche, N. Zerounian, E. Herth, X. Checoury, S. Sauvage, I. Sagnes, A. Foti, R. Ossikovski, J.-M. Hartmann, F. Boeuf, Z. Ikonic, P. Boucaud, D. Grützmacher, M. El Kurdi. Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys. Nat. Photonics, 14, 375-382(2020).

    [9] J. Chrétien, N. Pauc, F. Armand Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, V. Calvo. GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain. ACS Photon., 6, 2462-2469(2019).

    [10] D. Buca, A. Bjelajac, D. Spirito, O. Concepción, M. Gromovyi, E. Sakat, X. Lafosse, L. Ferlazzo, N. von den Driesch, Z. Ikonic, D. Grützmacher, G. Capellini, M. El Kurdi. Room temperature lasing in GeSn microdisks enabled by strain engineering. Adv. Opt. Mater., 10, 2201024(2022).

    [11] L. Peng, X. Li, Z. Liu, X. Liu, J. Zheng, C. Xue, Y. Zuo, B. Cheng. Horizontal GeSn/Ge multi-quantum-well ridge waveguide LEDs on silicon substrates. Photon. Res., 8, 899-903(2020).

    [12] L. Peng, X. Li, J. Zheng, X. Liu, M. Li, Z. Liu, C. Xue, Y. Zuo, B. Cheng. Room-temperature direct-bandgap electroluminescence from type-I GeSn/SiGeSn multiple quantum wells for 2 μm LEDs. J. Lumin., 228, 117539(2020).

    [13] D. Stange, N. von den Driesch, D. Rainko, S. Roesgaard, I. Povstugar, J.-M. Hartmann, T. Stoica, Z. Ikonic, S. Mantl, D. Grützmacher, D. Buca. Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells. Optica, 4, 185-188(2017).

    [14] P. F. Ambrico, A. Amodeo, P. Di Girolamo, N. Spinelli. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region. Appl. Opt., 39, 6847-6865(2000).

    [15] P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, P. St. J. Russell. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express, 13, 236-244(2005).

    [16] H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, F. C. Garcia Gunning. 81 Gb/s WDM transmission at 2 µm over 1.15 km of low-loss hollow core photonic bandgap fiber. European Conference on Optical Communication (ECOC), 1-3(2014).

    [17] S. Wu, S. Xu, H. Zhou, Y. Jin, Q. Chen, Y.-C. Huang, L. Zhang, X. Gong, C. S. Tan. High-performance back-illuminated Ge0.92Sn0.08/Ge multiple-quantum-well photodetector on Si platform for SWIR detection. IEEE J. Sel. Top. Quantum Electron., 28, 8200109(2022).

    [18] X. Li, L. Peng, Z. Liu, Z. Zhou, J. Zheng, C. Xue, Y. Zuo, B. Chen, B. Cheng. 30 GHz GeSn photodetector on SOI substrate for 2 µm wavelength application. Photon. Res., 9, 494-500(2021).

    [19] S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, Y.-C. Yeo. High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate. Opt. Express, 27, 5798-5813(2019).

    [20] H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, H. Chen. Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment. Appl. Phys. Lett., 102, 251907(2013).

    [21] P. Zaumseil, Y. Hou, M. Schubert, N. Von Den Driesch, D. Stange, D. Rainko, M. Virgilio, D. Buca, G. Capellini. The thermal stability of epitaxial GeSn layers. APL Mater., 6, 076108(2018).

    [22] S. Wu, B. Son, L. Zhang, Q. Chen, H. Zhou, S. C. K. Goh, C. S. Tan. Effects of high-temperature thermal annealing on GeSn thin-film material and photodetector operating at 2 µm. J. Alloy. Compd., 872, 159696(2021).

    [23] B.-J. Huang, C.-Y. Chang, Y.-D. Hsieh, R. A. Soref, G. Sun, H.-H. Cheng, G.-E. Chang. Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms. ACS Photon., 6, 1931-1938(2019).

    [24] M. A. Huque, S. K. Islam, B. J. Blalock, C. Su, R. Vijayaraghavan, L. M. Tolbert. Silicon-on-insulator based high-temperature electronics for automotive applications. IEEE International Symposium on Industrial Electronics, 2538-2543(2008).

    [25] H. Zhou, S. Xu, S. Wu, Y.-C. Huang, P. Zhao, J. Tong, B. Son, X. Guo, D. Zhang, X. Gong, C. S. Tan. Photo detection and modulation from 1550 to 2000 nm realized by a GeSn/Ge multiple-quantum-well photodiode on a 300-mm Si substrate. Opt. Express, 28, 34772-34786(2020).

    [26] C.-H. Tsai, B.-J. Huang, R. A. Soref, G. Sun, H. H. Cheng, G.-E. Chang. GeSn resonant-cavity-enhanced photodetectors for efficient photodetection at the 2 µm wavelength band. Opt. Lett., 45, 1463-1466(2020).

    [27] H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, Q. Wang. Silicon based GeSn pin photodetector for SWIR detection. IEEE Photon. J., 8, 7563433(2016).

    [28] Y. Lin, B. Son, K. H. Lee, J. Michel, C. S. Tan. Sub-mA/cm2 dark current density, buffer-less germanium (Ge) photodiodes on a 200-mm Ge-on-insulator substrate. IEEE Trans. Electron Devices, 68, 1730-1737(2021).

    [29] E. Kasper, M. Oehme. Germanium tin light emitters on silicon. Jpn. J. Appl. Phys., 54, 04DG11(2015).

    [30] D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, D. Buca. Study of GeSn based heterostructures: towards optimized group IV MQW LEDs. Opt. Express, 24, 1358-1367(2016).

    [31] B. Schwartz, M. Oehme, R. Koerner, S. Bechler, J. Schulze, M. Kittler. Luminescence of strained Ge on GeSn virtual substrate grown on Si (001). Proc. SPIE, 10108, 101080D(2017).

    [32] B. Schwartz, A. Klossek, M. Kittler, M. Oehme, E. Kasper, J. Schulze. Electroluminescence of germanium LEDs on silicon: influence of antimony doping. Phys. Status Solidi C, 11, 1686-1691(2014).

    [33] J. P. Gupta, N. Bhargava, S. Kim, T. Adam, J. Kolodzey. Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy. Appl. Phys. Lett., 102, 251117(2013).

    [34] T.-H. Cheng, C.-Y. Ko, C.-Y. Chen, K.-L. Peng, G.-L. Luo, C. W. Liu, H.-H. Tseng. Competitiveness between direct and indirect radiative transitions of Ge. Appl. Phys. Lett., 96, 091105(2010).

    [35] X. Sun, J. Liu, L. C. Kimerling, J. Michel. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Appl. Phys. Lett., 95, 011911(2009).

    Shaoteng Wu, Lin Zhang, Rongqiao Wan, Hao Zhou, Kwang Hong Lee, Qimiao Chen, Yi-Chiau Huang, Xiao Gong, Chuan Seng Tan. Ge0.92Sn0.08/Ge multi-quantum-well LEDs operated at 2-μm-wavelength on a 12-inch Si substrate[J]. Photonics Research, 2023, 11(10): 1606
    Download Citation